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ABSTRACT

a
Electrostatic Vlasov turbulence in a bounded spatial rigion is con-

'
sidered. An iterative approximation r ethod with a proof of convergence is

constructed. The method is non-linear and applicable to strong turbulence.

I. INTRODUCTION

Consider the one dimensional Vlasov-Maxwell system of equations,

2.	 ^-	 d^1= ^	 •l
dx

- VI X ^.^

a^ _cpt>

for the electron distribution function, F(x,v,T), and the electric field,

E(x,T), with a stationary and uniform ion background. Assume the existence

of a solution of this system of equations for -1 S x < 1 (x is dimension-

less, and measured in units of an arbitrarily length scale, L), 	 < v < W,

and T > 0. Then a method for constructing approximations to this solution

can be developed as follows:

g
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The Fourier-Fourier transform method' can be used to transform

equations 1-3 into an infinite system of first order hyperbolic partial

differential equations. This system has been studied before.' One further

aspect of this system will be considered here; it is that, on truncating

the infinite system, the resulting finite system is of a standard form

which has been used to produce constructive proofs of the existence of

solutions to a wide class of such systems . = Here, the existence of a
solution to the finite system will be assumed. The methods used for the

proofs of existence will be applied, nevertheless, to produce approxi-

mations to the exact solution of the finite system. The existence of the

finite system solution and the issue of how well it approximates the

solution of the infinite system will be addressed elsewhere.

II. THE FOURIER-FOURIER TRANSFORM

Let,
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and

1
I	 - 3YI TI

^I

< x < 1, and on the boundaries

+ F(-1,v,-t)] and E (±1,T ) =

Both f and E are periodic in x with period, 2.

3,

coo

fi T -r

then, f = F and E = E for -1

f (f1, v,T) _ (1/2 [F(1,v,T)

(112) (E(1 I T ) + E(-1,t )].

From equations 1 through

d Tm	 d ^,,,,
6.	 A( t m	 11'

	

7,	 i iN^^TEm = ^ m o '	 U; it {' i' i^	 ^ol^; ^^)

and,

	

8.	 -	 i1
^=o

in which J  = (-1) m Jo , and

where,

L

AV
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Equations 7 and 8 are redundant when m 1 0, and equation 7 yields no in-

formation when m = 0. In the following equation 7 will be used to

determine the c m (T) when m 1 0, and equation 8 will be used to determine

f0(T).

It will be assumed in the following that fm = 0 for m > M where M is

arbitrarily large, but finite. Since it is expected that those modes which

have wavelengths comparable or shorter than the Debye length in the plasma

will be strongly damped,' there is perhaps some a priori justification for

the truncation.

In Appendix A it is argued that the solution of equations 1-3 is deter-

mined by a choice of F(X,v,O) on the initial plane (-1 S x S 1,

-m < v < m, T = 0), of A (v,T) = F( -1,v,T ) - F(1,v,T ) in terms of F on

the boundaries (x = f1, - . < v < •, T > 0), and of a o (0). That argument

does not depend on the assumption of a neutral plasma (space-averaged). In

the following a neutral plasma will be assumed and then it will be shown

that the choice of the equivalent quantities, fm (v,0), Jo (v,T) and co(0)

uniquely determines the solution of the truncated equations 6-8.

III. THE NEUTRAL PLASMA

The space-averaged electron density is f0 (0,T). The restriction to a

neutral plasma is affected by setting f0 (0,T) = 1. This restriction is

consistent with equation 6 only for a limited class of J 0 (v,T). From

I 4A

14

equation 6,

where du(T) = u( -1,T ) - u(1,T ). In the following it will be assumed that

10 (0,T) = 0, and that f0 (0,T,) = fo (0,0) = 1.

5
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Fyfe and Montgomery • have noted that co (T) cannot be chosen freely.
They have produced an exact solution for c0 (T) and uo (T) (the space average
of u(x,T)) from their model of the one dimensional Vlasov-Maxwell plasma.

Their results apply to the periodic plasma (A(v,T) = 0). A generalization

to the non-periodic neutral plasma being considered here is possible.

From equation 8 (or equation 3),

ace

i'- o
9 .	 _ _ 

tT	
` c `,)

Ua

and from equation 6 (or equation 1),

L '	 —	 ("r) = T "^ 0'

or,

JA 	 +' ^c ._ I SP
10.

where 6P ( T) = P (-1,T) - P ( 1,T) and

P(X PT)	 VA
ao

zt
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(Notice that since, for the neutral plasma, u(-1,T) = u ( 1,T), 6P is

actually just the difference in electron plasma temperature at the

boundaries.) An exact solution of equations 9 and 10 is available; it is

Ga ^';)	 ee (0) L WS	 + l l e ie) S lrl '^'

LA kol C-C' s ^t - E^lo> sin

11. N tih l ^-1,1

+ a	 d	 S PO)	 I <4r.,^^
0

The result of Fyfe and Montgomery is regained when 6P a 0.

Notict that it is possible to obtain large E 0 (T) and uo (T) due to an

approximately linear growth of the integral in equation 11 with increasing

T if 6P (T) contains harmonic oscillations with period 1 (the inverse plasma

frequency). It is not possible for E 0 ( T) to be constant in time unless 6P

is also constant , e o (0) a 1/2 6P and u o (0) a 0. Under these conditions

u0 (T) a uo(0) = 0. Since e 0(T) is a measure of the potential difference on

the boundaries, it should be noted that the preceding statements concerning

E O (T) apply also to that potential difference. All of the above, and any

other consequence of equation 11, apply exactly for the neutral plasma no

matter what else is occuring in the plasma.

IV. BASIC INTEGRAL EQUATION

Given the solution for E O (T) and uo (T), a major reduction in the com-

plexity of equations 6-8 can be made by introducing a new dependent

variable through,

0
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then,

M

Nr	 VA

where,	 ti

and the prime on the summation symbol indicates that the n = 0 term is

omitted. Since c0 (T) can be considered a known function of time, a

solution of equation 12 for Km is equivalent to a solution of equations 6- 8

for fm . Notice that in the special case of a periodic plasma (Jm = 0)

equation 12 becomes independent of c o (T). Thus, a single solution of

equation 12, which will be shown to be determined solely by Km (v,0), is

equivalent to the entire class of solutions for fm which contains all

possible choices of co(0).

Using the method of characteristics', equation 12 can be integrated

once to obtain,

ti

13. N

	 ( 0 1 Y^
+ 	 a tS envy - ^)I Kn

	 w. •M
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Equation 13 will play a central role in the following development of

approximations to Km.

V. THE APPROXIMATION METHOD

The result which will be obtained in this section can be simply stated

as follows:

A sequence of functions, Km (v,t;a), will be introduced with

1	 '(^ (^'^ ^^ p^ - '{ 
m 

11C- rh y 0) t	 a G",^ 1^-- Yrl 1'^- .t 1

0

Since F(X,v,O) will be assumed given, K m(v,0) can be considered a (mown

function of v which is uniquely related to the initial F; am can be

determined from e(v,t). The other members of the sequence are to be

related to each other through,

^K,,, (a.i )	 1^ ,kK+1)	
M f	 ,

15. 
1 ^,
	 ^ ^	

Kko
w+-n

h= - rri

or,
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t	 '^`^'^	
c^ ^^lt- 111 ;~-,\)^ it \(^,^1 • ^ ^-\ ^ y`•• m^ Y- .^1 ^' ^^	 4

(i	 1	 m •.1

It will be shown that ;4% Km (v,T;a) -- Km (v,T); i.e., it will be shown that

the sequence of approximations mint converge to the exact solution. This

convergence will not depend on the presence of 2 mall parameter for ex-

pansion purposes and will apply for any finite value of M. Thus, this

approximation method applies to strong turbulence with any finite number of

wave modes, no matter how large. Notice that the character of the method

is to place any member of the sequence in quadrature (through equation 16);

it does not produce equations which must be solved.

1. preliminaries to Proof of Convergence

To facilitate the proof of convergence the K m will be asssumed vector

components of a (2M + 1) - dimensional vector function,

K(v,T) _ (K-M (v,T), K-M +1(v,T) ... KM (v,T)). Equation 16 can be considered

an integral transformation which relates members of the sequence through

K(a + 1) = T K(a).

The proof of convergence will be given on the closed domain, 0,

pictured in figure 1. M examination of equation 16 will show that

knowledge of K(a) on 0 is necessary and sufficient to determine K(a + 1) on

0. The domain, 0, is centered on the line v a 0 since on that line all of

the quantities of physical interest ( the various moments of F as well as

the Fourier components of the electric field) can be found. The time, T,

10
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is ai .y finite time of interest; ' .he solution will be obtained for all

0 < T ; T.

A further subdivision of 0 is necesaarv. Imagine the strips on the

(v,t) - plane defined by r6 < T S (r + 1) 6 wher3 r = 0,1,2... and 6 > 0 is

to be determined. Then, let O rb be the intersection of the r'th strip with

0. The transformation, T, will be shown to be a contraction 6 on each of

the Ord and then the results for the stationary element of T on each strip

will be pieced together to yield equation 16.

The following definition of a norm will be used. Let,

``	 -Z	 !" k	 -M
I rnMx	 K lt,Yll) ...	 1KM i., Y)^^

O	 l o n Aomei n C)

At each point, (v,T), the absolute values of all of the K m ( v,T) are to be

taken, and then the maximum of these chosen. Then, the supremum, on 0, of

the resulting function is to be found. The vector, K, and the domain, 0,

have been used here for illustrative purposes. Other vectors and domains

will appear, but in each case, the symbol, 11 11 0 , has the analogous

meaning.

In Appendix B it is shown that, in the limit M= -, J JKJ J0 = 1. In the

following it will be assumed that IIKI1 0 exists for finite M. This is not

actually a new assumption; on 0, it is totally equivalent to the earlier

assumption of the existence of a solution to the truncated system. It will

also be assumed that the boundary conditions are 2hoaen so that

I Jul 1 0 exists. The number, N = 2(lJKJ1 0 r I Jul 10 T), will be used.

11



2. Convergence on a Narrow Strio

Equation 13 can be used to show that

rs

17.

M	 7

n.--M	 rj

^)r any i ^- rd. The proof that, on Ora,

y)	 VV1 4-, r

rS

18.

r1	
'^

^ ♦ 	 42 -^	
Sr

will now be given with Km (v,T; 0) determined by equation 14. The symbol,

Tra , will be used for the integral transformation in equation 17 on Or;'

The proof is in three parts.

r
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3. Convergence at large

The proof of convergence on a narrow strip given in the preceding

section will be used here to construct a proof of convergence at large (oni

the domain, 0). It will be shown that, on 0, &4% K m(v,T; a) = Km (v,T)	 4

where Km ( v,T; 0) is given by equation 14 and K m ( v,T; a) is given by

equation 16. An inductive argument will be given which assumes equation 18

on Ora as a starting point.

Proof:

Notice from equation 18 that, when r o 0,

KY4 0

19.

M	 Y

IM
VI)

o^y aG	 h	 rN- n

for 0 < T S a. (It will be assumed that the values of v under consider-

ation here are always on 0.) Assume, for some value of r, that,

,!	

r
K \^ r S^	 ^`^- ^1nrS^ G} }-	 A ̂tT	 A)
m ^	 m

0

20.

M	
rZ

M >	 A, N	 iA1-A- V1

4100 M= — M 	 0
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b). Part Two

Let V(v,T) and W(v,T) be any (2M + 1)-dimensional vector fields on Ord

such that both JIVII 0	 S N and IIWII O	S N. Define V' = Trd V and
rd	 rd

W' = Tr6 W. Then, IIV' - W'II 0	 S 1/2 J^V - W11 0	for d small enough.
H	 rd	

j

Proof

i vm(^,
_M
Z1	

hI 	 ^j	 -m l^-a}I ^I^(o,al^ IN Olt r -,%) I a^

M^

Ors

Thu- JIV'-W 1 11,	 S 1/2 JIV 411 0	if 6 is small enough.
rd	 rd

Discussion

This part of the proof shows that Tr6 is a contraction. When T rd is

applied to the difference of two normed vector fields, the-resulting

difference is reduced. In view of part a). of this proof, T rd can be

applied an arbitrary number of times to a pair of suitably chosen initial

vector fields with the difference between the resulting vector fields

reduced each time. In the following this basic property will be used to

find the stationary element of Trd'

s,. Pirt Three

Let Km(v,T; 0) be defined by equation 14. Define Km(v,T; a)

Trd Km(v,T; a-1) on Ord . Then, Km(v,T) = aim Km( v,T; a) on Ord'

Proof

4 K0% 4 4 ; oil	 IIK !I +. it cr1I T —	 N
14 
0	

0
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Therefore, IIK(0)II O	 S (1/2) N < N. From part a). then, IIK( a )II O	S N
r6	 r6

for all a. Now, in the result of part b). of this proof, let K ( a) = V and

K(S) = W. Then,

K l"`1 - r\ q1I'^rf ` a. 
II K l°^- ^^ — Y\ (Q-I)II ri

Suppose, a = S. Then, IIK(a) - K (a)II O	= 0 for all a. Suppose, a > 0
rd

1. Then, ( I K ( a ) - K(9 )IIO rd S (1/2)0	
rd S

II K ( a -0) - K(0)II O	4N(1/2)0.

Thus, IIK(a) - K (a)IIo 0 as ( a,O)-	 Similarly IIK(a) - K (s)II0 0 as

	

rd	 rd
(a,9)+ w when 0 > a Z 1. Thus, K (a) is a Cauchy sequence' on Ord'

f
K(a) converges uniformly to K on O rd where K• _	 K(a)

= aimTrd K ( a-1) _ `rdK • . Since K
a 

= Trd K it is a stationary element of

Trd . But, it is easy to see that the stationary element of T rd is unique.

Suppose there are two stationary elements, K and L	 Then,

f	 f	 •	 •
K -L =T rd K - T rd L, and

O	 Q

	

OrS	 rs	 ra

Thus, I I K - L I I O	 = 0.
rd

Since K(v,T) is a stationary element of Trd on Ord , it is the station-

ary element given by K(v,T) = aim K(v,T; a). Thus, equation 18 follows.

15



3. Convergence at large

The proof of convergence on a narrow strip given in the preceding

section will be used here to construct a proof of convergence at large (on

the domain, 0). It will be shown that, on 0, &4% Km (v,T; a) = Km (v,T)

where Km(v,T; 0) is given by equation 14 and K m(v,T; a) is given by
equation 16. An inductive argument will be given which assumes equation 18

on Ora as a starting point.

Proof:

Notice from equation 18 that, when r = 0,

K ll	
o

19.

M	 Y

	

. 
IM	 JxLr-mo--^)A UO A -a)

	

al'1 t^C!	 h	 YN-h

for 0 < T S a. (It will be assumed that the values of v under consider-

ation here are always on 0.) Assume, for some value of r, that,

r^

^ ^^, r S^ _ ^(,^^^ -rY1 rS^ G^ }-	 c^^ C^^^ r1n^Y$ - ,l^ Jl)

	

m	 ^
0

20.

M	
rZ

^Vl> M
d+130 n'--M	 0
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Notice from equation 19 that equation 20 is true when r = 1. By the

induction hypothesis (equation 20),

^^ 
^1r- YY1 

t ,(^ r	 Y'	 _ ^^ ^^ `^ ► 11 i 1 (: )	 ^^ Uhl
rYl

0

21.

^y00 n= M
	 o

Equation 21 can be substituted into equation 18 to obtain,
A-

^{^^^^Y^ 	 ; gy p} +

c
22.

1

	

4- 1,^ ' L Ohl '1 a [s- ►v1k'. .111 ^^^^0 1'X	 ^^( t^ M
d

on Ord ; i.e., for rd < T < (r + 1) S. In particular, equation 22 is true

for T = (r + 1) d. Thus, if equation 20 is true for any value of r, it is

true for all larger values of r. Since equation 20 is true for r = 1, it

is true for all values of r and equation 22 is true everywhere on 0.

Discussion:

Equation 22 is the primary result of this paper. From equation 22 a

sequence of functions can be computed with the understanding that the

sequence will converge to the truncated Fourier series expansion of the

Vlasov plasma distribution function.

17



VI. CONVERGING SEGUE]

In Appendix B it

Wm/8v, etc.) can be

assumed tha` 1 1 K' 
1 1 0

tially the same pros,

ICES FOR THE KINET:

is shown that, in

uniformly bounded

amd 11K"11 0 exist

adure as given abo,

IC AND FIELD ENERGIES

the limit M a co, K' m and K"m (K'm

on 0. In the following it will be

for finite M. In this case essen-

ie can be carried out to prove,

ti

K^r Nr (^- m ^) C,VIA
ti

M	 r	
,/

^A A h V%( C)

M

VA - n

and,

ti

^T- Vii

C

i	 l	 l24.	 ,,2 1^^ >	 \n^ cl^ ^nt0,1;^c^
A	 *1 M	 0

M ' I1 Y	 ,v
+ dim	 'n) AXE.r.-m l~-a)l K 

ko ,
	 a^	 (^=m^Y•^1,^1j^^

a

as long as the boundary conditions are chosen so that IIa'I1 0 and

II a ll I1 0 exist.

18



Equations 23 and 24 show that the sequences of functions which are

obtained by differentiating the K.(v,T; a) converge to the respective

derivatives of Km(v,i). Thus, K I M(a) and K" m(a) can be expected to approx-
imate the exact derivatives. The derivatives, with respect to v, play an

important role in the application of this theory. At v = 0, K m and its
derivatives are related to the coefficients in Fourier series expansions of

the moments of the distribution function. For example,

DO

m - - oc,

and,

Oa

u k x ,'	 m^^ _ -	
L ^^ log ;^^L w^ IT 

T 

rh = oa

in which fm and f I m can be computed from K m and K' m (see Appendix B).
From equations 23 and 24 it can be shown that,

1'^^' ^o, 	 a = ^ C (o, d) +
0

25.

^^ i 11 d	 d	 ^

n = -M
This equation bears on energy conservation in the plasma. Using

00

Ql x , &T _	 ^V V 3	 V tit

-00
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and Po (T) for the space average of P(x,T), equation 25 can be rewritten in

terms of more familiar notation as,

26.	 —	 E

	

^.	 I a M Ia	
A^ k1 1 K n

M	
n;-M

	

Ir	 Vin) I K v, ^o,Y	 -^))
n---m

td

S Q t ->>
0

where 6Q (a) = Q(-1,A) - Q(1,a). The a'th iterate to `he space averaged

kinetic energy density is given by P 0 (T; a). The :ontriDutions to

P0 (T;a) on the right side of equation 26 are as followci: The first line in

equation 26 gives the total energy in the plasma at T = 0. P o (0) is the

initial kinetic energy, e 2o (0) is the initial electric field energy in the

space averaged part of the field, and the sum on this line represents the

field energy in E'(x,0) averaged over space. The second line of equation

26 gives the negative of the total field energy at any time. The sum in

the second line is the space average of the field energy in the turbulent

part (E'(x,T)) of the electric field, as given by the (a-1) 1 th iterate.

The last line of equation 26 gives the accumulated net transfer of energy

into -1 < x < 1. Thus, energy is conserved at each iteration. Further-

more, sequences of approximations for the kinetic and electric field

energies in the plasma can be computed from equation 26. From equations 23

and 24 it can be seen that these sequences must converge to, respectively,

the kinetic energy in the truncated distribution function and the

corresponding turbulent electric field energy.

20



VII. CONCLUSION

A one dimensional electrostatic Vlasov-Maxwell plasma model has been

considered in a bounded spatial region. Consideration has been limited to

a plasma with uniform and stationary ion background and with zero

space-averaged charge. An iterative method has be rm constructed for

computing a sequence of approximations to the probability distribution

function for the initial-boundary value problem.

The probability distribution function has been Fourier transformed in

its velocity variable, and Fourier series expanded in its spatial variable.

The Fourier series expansion has been truncated at an arbitrarily large but

finite value. It has been assumed that a solution exists to the finite

system of partial differential equations which govern the truncated ex-

pansion of the distribution function. Under this assumption it has been

shown that the sequence of approximations mentioned in the preceding

paragraph must converge to the exact solution of the truncated system.

Convergence does not depend on the presence .)f a small expansion parameter

for expansion purposes. The degree to which the solution of the truncated

system approximates the solution of the infinite system has not been

considered, but, in view of the arbitrarily large number of Fourier modes

that is allowed, a good approximation is anticipated in many applications.

The issue of the rate at which convergence occurs is under investi-

gation at present. In those situations where convergence is rapid enough

to make this iterative method useful, it can be viewed as an approximation

technique for Vlasov turbulence which is non-linear and applicable to

strong turbulence in a bounded region of space.

Ai
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APPEJDTX A

Consider the one-dimensional Vlasov-Maxwell system of equations 1-3.

Assume the existence of a solution to this system of equations on the
f	 ^^

domain, D, defined by -1 < x < 1, -	 < v < -, and T > 0. Then, what

combination of initial and boundary conditions on F and E uniquely,

consistently, and conveniently determines that solution?

Given the existence of E(x,T), the method of characteristics can bta

used to solve equation 1.' The solution 13 F(x(s), v(s), T(s)) a

F(X(0), v (0), T(0)) where x(s), v(s), and T ( s) are the solutions of the

system,

xts)

JV

AC.

subject to x(0), v(0), and T(0) for initial conditions. In typical

applications of this type of solution, the point, (x(0), v(0), T(0)), is

assumed on one of the boundaries where F(x(0), v(0), T (0)) is known,.

Then, F is known everywhere along the characteristic line given by x(s),

v(s), and T ( s) for s Z 0. The complete solution depends on filling all

23
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(x,v,T) of interest with characteristic lines which are connected to

boundaries where F ( x(0), v(0),T(0)) is (mown. But, this typical approach

is self-contradictory for the initial-boundary value problem being

considered here.

Figure 2 contains schematic representations of projections onto the

plane, v = 0, of various types of possible characteristic lines.

Progression along the characteristic lines, with s increasing, is indicated

by arrows. The dashed lines indicate characteristics which enter D on the

initial plane (-1	 x < 1,	 < v < m, T = 0) or on either of the

boundaries (x = f1 ,	 < v < m, T > 0) and then remain trapped in D.

These are the only characteristics that can be treated as outlined in the

preceding paragraph. 1111 other characteristic line! ( solid lines) enter D

and then exit, with s increasing. The solution of equation 1 gives F =

constant along each of these characteristic lines. Thus, F must have a

single value at every pair of entry and exit points. The initial and

boundary values for F are not independent and cannot be chosen arbitrarily.

There is no unique method for choosing the initial - boundary values for

M

F such that the possible contradictions discussed above are avoided. The

method used here has been chosen for both mathematical and observational

convenience. In figure 3 it is demonstrated that the solution at an

arbitrary point, (x,v,T), is determined by specifying F(X,v,O) on the

initial plane, and e ( v,T) = F(-1,v,T) - F(1,v,T) in terms of F on the

boundaries. The solid lines indicate possible characteristic lines along

which F = constant. The dashed lines connect exit and entry points at

which the value of F must be related through the use of e(v,T). In the

example presented in figure 3, F(x,v,T) = F(xo . vo , 0)

+ e(v1 , T 1 ) - 4(v20 T 2 ). Given the existence of E(x,T), this choice of
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F(x,v,O) and e(v,t) uniquely determines F(x,v,T) through equation 1. The

type of contradictions discus3ed above are avoided because a(v,T) always

relates F on an exiting characteristic line to F on an entering

characteristic line.

The e-method for specifying the boundary data allows for the expression

of the data in terms of the measurable moments of the distribution function

on the boundaries (e.g., the difference in density, current, temperature,

etc.,) where others do not. (Mathematically, it is acceptable to specify F

on the boundaries for incoming velocities only. It is also possible to

express the boundary conditions in terms of the ratio, F(x = 1)/F(x = -1).

Neither of these boundary conditions can be expressed in terms of the

moments on the distribution function on the boundaries.) Notice that the

well studied "periodic plasma" in which e(v,T) : 0 is a special case of the

e-method. More generally, the e-method plays a natural role in the Fourier

series Expansion analysis of the non-periodic plasma. A choice of F(x,v,

0) and e(v,T) leads to a unique set of Fm(v,0) and Jm(v,T). Thus, the

e-method has been chosen as the basis for this study of the

initial-boundary value problem for the Vlasov-Maxwell plasma.

Now, assume F(x,v,T) is known. Then, what additional initial-boundary

data must be specified to determine E(x,T) from equr,tions 2 and 3?

If E(x,T ) is separated into Its space average, c o (T ), pluc an

I
x-dependent part through E(x,T) ; c 0 (T) + E (x,T ), then equation 2

determines E (x,T) only. From equation 2,

i

25



s

x

A.1 	 tY^ r X I^M1	 I	 C^	 t	 ^l'T ^ '	 ^x ' V1 1x-,Y1

where no (T) is the space average of n(x,T), and

1

A.2	 ^` l' ^, =	 X X h X, '^'
J	 .,

From equation 3,

A.3

A C,	 k -0
 ̂ 	 o

where u0 (T) is the space average of u(x,T). Notice, if F is known, then

E^(x,T) is given by equation A.1 with no freedom for choosing boundary or

initial conditions. Further, given F, uo (T) can be calculated, and then,

c o (T) can be calculated from equation A.3 if 
co 

( 0)is specified. Thus,

only c o ( 0) need be specified to determine E(x,T) given F.

By combining the argument given above for determining F given E and for

determining E given F, it seems plausible that speci f ication of F(x,v,0),

d(v,T) and c o (0) uniquely determines a solution of equations 1-3. This is

= a jWgjQ ; of the existence, nor the uniqueness of that solution; it is,

at best, a plausibility argument.
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APPENDIX B

The Fourier series expansion of F has been truncated in section II, and

the resulting truncated version of equations 6-8 has been solved in

principle in section VI, not for F, but for

M

(X ) V
B.1	 m

The fm (v,T) are the solution of the truncated equations which are still

related to f(x,v,T) in the usual manner:

l^ t Y- mT X
B.2	 llt ^1 X 	 I  'L\X,^^^l

m

OK;

The degree to which f approximates F has not been investigated in this

paper. However, since the theory dev: •ped in this paper applies to a

truncation for arbitrarily large M it has been assumed that this

approximation can be made as good as necessary. In particular, it has been

assumed that for some finite M, 11 K I1 0 , II K II O and 11K"11 0 exist. The

conditions under which this assumption is valid are under investigation.

The goal of this appendix is to prove that 11KII 0 = 1 and both

11K 11 0 and 11K 11 0 exist when M =	 For this purpose it is convenient

to introduce

P.

1t
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c

In the following it will be assumed that the boundary conditions are chosen

such that, when the solution of equation 11 is substituted into equation

B.3, the resulting ^(T) can be uniformly bounded on the interval, 0 < T <

T. From the definition of the K m ,	 c

BA	 I n I = I t M I

and

B.6 	
^ VA 	 1^ 	

^IMI +a^ I I I ^ ^,y^ f I ^V*4 I

If fm , f p m and f pm can be uniformly bounded on 0, then the goal of this

appendix will have been achieved.

From equation B.2,

	

1	 po

	

-,	 _00
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But, in section III it was shown that f o (O,T) = 1. Thus Ifm(v,T)	 1 and

II K I1 0 = 1.

By differentiating equation B.2 it can be shown that,

COO

'VA	 kx 'V,^A m
1	 _ ao

where f " o (O,T) < 0. But, - (1/70 2 f 0 (O,T) is actually the kinetic energy

in the plasma. The equation which governs conservation of energy can be

obtained from equations 6-8 and written,

^l c(>>	 V)	 o ) C))	 ko) 4- HU 
°	 n--

 n
VI Z -M

ly

+	 ^A SQ")
O

where SQ(a) is the net rate at which energy is entering the region in x of

interest (see section VII). Thus,

 E^lo) 4-	 t0)0)k.(O,O)+ IIA__010
+ a ^^ Q(^1

0
The first line of the right side of this equation represents the total

initial energy in the plasma. If this initial energy is chosen bounded,

and if the rate at which energy is allowed to enter, 6Q( T), is assumed

n
uniformly bounded on 0 _e T S T, then If m(v,T)I is uniformly bounded on 0.
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Given the uniform bounds of fo (O,T) and f" o (O,T) which have been

obtained above, it is, possible to prove a uniform bound on f p m .	 From

equation B.2, ' LW.,

V)^^
rbo

_	 A X }^^ Y ^V	 * AV	 ICI	 t— ^X,^,^> a
_ , -00 ... , i

Y'
k
 4- ^^	 ^v v^ t= lx^V,`'1

p

it	 ^0, YI +	 l ^, ;o

"
Thus, f m is uniformly bounded on 0, as well as 

m 
and f m , and from

^	 n
equations B.5 and B.6 K 0 and	 K 0 must exist.

Be

I
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FIGURE 1	 The domain 0 on the (v,t)-plane.

FIGURE 2	 A schematic representation of all possible characteristic
curves on the domain D.

FIGURE I	 A possible construction of F(x,v,t) using F(X,v,O) and

n(v,t).
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