335 research outputs found

    The role of toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCs) - Peptidoglycan and lipoteichoic acid are inducers of DC maturation and require TLR2

    Get PDF
    Toll-like receptors (TLRs) have been found to be key elements in pathogen recognition by the host immune system. Dendritic cells (DCs) are crucial for both innate immune responses and initiation of acquired immunity. Here we focus on the potential involvement of TLR ligand interaction in DC maturation. TLR2 knockout mice and mice carrying a TLR4 mutation (C3H/HeJ) were investigated for DC maturation induced by peptidoglycan (PGN), lipopolysaccharide (LPS), or lipoteichoic acids (LTAs). All stimuli induced maturation of murine bone marrow-derived DCs in control mice. TLR2− /− mice lacked maturation upon stimulation with PGN, as assessed by expression of major histocompatibility complex class II, CD86, cytokine, and chemokine production, fluorescein isothiocyanate-dextran uptake, and mixed lymphocyte reactions, while being completely responsive to LPS. A similar lack of maturation was observed in C3H/HeJ mice upon stimulation with LPS. DC maturation induced by LTAs from two different types of bacteria was severely impaired in TLR2− /−, whereas C3H/HeJ mice responded to LTAs in a manner similar to wild-type mice. We demonstrate that DC maturation is induced by stimuli from Gram-positive microorganisms, such as PGN and LTA, with similar efficiency as by LPS. Finally, we provide evidence that TLR2 and TLR4 interaction with the appropriate ligand is essential for bacteria-induced maturation of DCs

    Evolution at the Origins of Life?

    Get PDF
    The role of evolutionary theory at the origin of life is an extensively debated topic. The origin and early development of life is usually separated into a prebiotic phase and a protocellular phase, ultimately leading to the Last Universal Common Ancestor. Most likely, the Last Universal Common Ancestor was subject to Darwinian evolution, but the question remains to what extent Darwinian evolution applies to the prebiotic and protocellular phases. In this review, we reflect on the current status of evolutionary theory in origins of life research by bringing together philosophy of science, evolutionary biology, and empirical research in the origins field. We explore the various ways in which evolutionary theory has been extended beyond biology; we look at how these extensions apply to the prebiotic development of (proto)metabolism; and we investigate how the terminology from evolutionary theory is currently being employed in state-of-the-art origins of life research. In doing so, we identify some of the current obstacles to an evolutionary account of the origins of life, as well as open up new avenues of research

    Identification of structurally re-engineered rocaglates as inhibitors against hepatitis E virus replication

    Get PDF
    Hepatitis E virus (HEV) infections are a leading cause of acute viral hepatitis in humans and pose a considerable threat to public health. Current standard of care treatment is limited to the off-label use of nucleoside-analog ribavirin (RBV) and PEGylated interferon-α, both of which are associated with significant side effects and provide limited efficacy. In the past few years, a promising natural product compound class of eukaryotic initiation factor 4A (eIF4A) inhibitors (translation initiation inhibitors), called rocaglates, were identified as antiviral agents against RNA virus infections. In the present study, we evaluated a total of 205 synthetic rocaglate derivatives from the BU-CMD compound library for their antiviral properties against HEV. At least eleven compounds showed inhibitory activities against the HEV genotype 3 (HEV-3) subgenomic replicon below 30 nM (EC50 value) as determined by Gaussia luciferase assay. Three amidino-rocaglates (ADRs) (CMLD012073, CMLD012118, and CMLD012612) possessed antiviral activity against HEV with EC50 values between 1 and 9 nM. In addition, these three selected compounds inhibited subgenomic replicons of different genotypes (HEV-1 [Sar55], wild boar HEV-3 [83-2] and human HEV-3 [p6]) in a dose-dependent manner and at low nanomolar concentrations. Furthermore, tested ADRs tend to be better tolerated in primary hepatocytes than hepatoma cancer cell lines and combination treatment of CMLD012118 with RBV and interferon-α (IFN-α) showed that CMLD012118 acts additive to RBV and IFN-α treatment. In conclusion, our results indicate that ADRs, especially CMLD012073, CMLD012118, and CMLD012612 may prove to be potential therapeutic candidates for the treatment of HEV infections and may contribute to the discovery of pan-genotypic inhibitors in the future. © 2022 The Author(s

    Dissection of a Type I Interferon Pathway in Controlling Bacterial Intracellular Infection in Mice

    Get PDF
    Defense mechanisms against intracellular bacterial pathogens are incompletely understood. Our study characterizes a type I IFN-dependent cell-autonomous defense pathway directed against Legionella pneumophila, an intracellular model organism and frequent cause of pneumonia. We show that macrophages infected with L. pneumophila produced IFNβ in a STING- and IRF3- dependent manner. Paracrine type I IFNs stimulated up-regulation of IFN-stimulated genes and a cell-autonomous defense pathway acting on replicating and non-replicating Legionella within their specialized vacuole. Our infection experiments in mice lacking receptors for type I and/or II IFNs show that type I IFNs contribute to expression of IFN-stimulated genes and to bacterial clearance as well as resistance in L. pneumophila pneumonia in addition to type II IFN. Overall, our study shows that paracrine type I IFNs mediate defense against L. pneumophila, and demonstrates a protective role of type I IFNs in in vivo infections with intracellular bacteria

    Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent stepin ΔinvG S. Typhimurium colitis

    Get PDF
    Intestinal dendritic cells (DCs) are believed to sample and present commensal bacteria to the gut-associated immune system to maintain immune homeostasis. How antigen sampling pathways handle intestinal pathogens remains elusive. We present a murine colitogenic Salmonella infection model that is highly dependent on DCs. Conditional DC depletion experiments revealed that intestinal virulence of S. Typhimurium SL1344 ΔinvG mutant lacking a functional type 3 secretion system-1 (ΔinvG)critically required DCs for invasion across the epithelium. The DC-dependency was limited to the early phase of infection when bacteria colocalized with CD11c+CX3CR1+ mucosal DCs. At later stages, the bacteria became associated with other (CD11c−CX3CR1−) lamina propria cells, DC depletion no longer attenuated the pathology, and a MyD88-dependent mucosal inflammation was initiated. Using bone marrow chimeric mice, we showed that the MyD88 signaling within hematopoietic cells, which are distinct from DCs, was required and sufficient for induction of the colitis. Moreover, MyD88-deficient DCs supported transepithelial uptake of the bacteria and the induction of MyD88-dependent colitis. These results establish that pathogen sampling by DCs is a discrete, and MyD88-independent, step during the initiation of a mucosal innate immune response to bacterial infection in vivo

    Study of disease-relevant polymorphisms in the TLR4 and TLR9 genes: a novel method applied to the analysis of the Portuguese population

    Get PDF
    Toll-like receptors (TLRs) are cellular receptors that mediate recognition of microbial challenges and the subsequent inflammatory response. Genetic variations within these inflammation-associated genes may alter host-pathogen defence mechanisms affecting susceptibility towards infectious diseases. Taking into account the significance of these genes, we developed a simple and rapid method based in the bi-directional PCR amplification of specific alleles (Bi-PASA) for genotyping known sequence variants in TLR4 (Asp299Gly and Thr399Ile) and TLR9 (T-1237C) genes. This method allows genotype determination in a single reaction and is amenable to large-scale analysis. We used Bi-PASA to characterize the distribution of these polymorphisms in the Portuguese population. A total of 388 randomly selected blood donors of Portuguese origin (203 females and 185 males) were genotyped and allele frequencies were determined. Among the tested individuals, 11.1% and 10.8% were heterozygous for Asp299Gly and Thr399Ile, respectively. In what concerns the T-1237C variation in TLR9, the variant allele was present in 19.4% of the individuals tested. Besides confirming the usefulness of the Bi-PASA in polymorphism analysis, the data presented provide valuable information on TLR polymorphisms in the Portuguese population that can be used to stratify risk patients with increased susceptibility to infection.Carvalho A. was financially supported by a fellowship from Fundação para a Ciência e Tecnologia, Portugal (contract SFRH/BD/11837/2003). This study was supported by Fundação para a Ciência e Tecnologia, Portugal (POCI/SAU-ESP/61080/2004)

    Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE

    Get PDF
    Autoantibodies against double-stranded DNA (dsDNA) and nucleosomes represent a hallmark of systemic lupus erythematosus (SLE). However, the mechanisms involved in breaking the immunological tolerance against these poorly immunogenic nuclear components are not fully understood. Impaired phagocytosis of apoptotic cells with consecutive release of nuclear antigens may contribute to the immune pathogenesis. The architectural chromosomal protein and proinflammatory mediator high mobility group box protein 1 (HMGB1) is tightly attached to the chromatin of apoptotic cells. We demonstrate that HMGB1 remains bound to nucleosomes released from late apoptotic cells in vitro. HMGB1–nucleosome complexes were also detected in plasma from SLE patients. HMGB1-containing nucleosomes from apoptotic cells induced secretion of interleukin (IL) 1β, IL-6, IL-10, and tumor necrosis factor (TNF) α and expression of costimulatory molecules in macrophages and dendritic cells (DC), respectively. Neither HMGB1-free nucleosomes from viable cells nor nucleosomes from apoptotic cells lacking HMGB1 induced cytokine production or DC activation. HMGB1-containing nucleosomes from apoptotic cells induced anti-dsDNA and antihistone IgG responses in a Toll-like receptor (TLR) 2–dependent manner, whereas nucleosomes from living cells did not. In conclusion, HMGB1–nucleosome complexes activate antigen presenting cells and, thereby, may crucially contribute to the pathogenesis of SLE via breaking the immunological tolerance against nucleosomes/dsDNA

    DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical course of cystic fibrosis (CF) is characterized by recurrent pulmonary infections and chronic inflammation. We have recently shown that decreased methylation of the toll-like receptor-2 (TLR2) promoter leads to an apparent CF-related up-regulation of TLR2. This up-regulation could be responsible, in part, for the CF-associated enhanced proinflammatory responses to various bacterial products in epithelial cells. However, the molecular mechanisms underlying DNA hypomethylation-dependent enhancement of TLR2 expression in CF cells remain unknown.</p> <p>Results</p> <p>The present study indicates that there is a specific CpG region (CpG#18-20), adjacent to the SP1 binding site that is significantly hypomethylated in several CF epithelial cell lines. These CpGs encompass a minimal promoter region required for basal TLR2 expression, and suggests that CpG#18-20 methylation regulates TLR2 expression in epithelial cells. Furthermore, reporter gene analysis indicated that the SP1 binding site is involved in the methylation-dependent regulation of the TLR2 promoter. Inhibition of SP1 with mithramycin A decreased TLR2 expression in both CF and 5-azacytidine-treated non-CF epithelial cells. Moreover, even though SP1 binding was not affected by CpG methylation, SP1-dependent transcription was abolished by CpG methylation.</p> <p>Conclusion</p> <p>This report implicates SP1 as a critical component of DNA demethylation-dependent up-regulation of TLR2 expression in CF epithelial cells.</p
    • …
    corecore