94 research outputs found

    Factors Associated with Improved Outcome of Inhaled Corticosteroid use in COVID-19: A Single Institutional Study

    Get PDF
    Asthmatics seem less prone to adverse outcomes in coronavirus disease 2019 (COVID-19) and some data shows that inhaled corticosteroids (ICS) are protective. We gathered data on anecdotal ICS and outcomes of patients hospitalized with COVID-19, given there is literature supporting ICS may reduce risk of severe infection. In addition, we fill gaps in current literature evaluating Charlson Comorbidity Index (CCI) as a risk assessment tool for COVID-19. This was a single-center, retrospective study designed and conducted to identify factors associated intubation and inpatient mortality. A multivariate logistic regression model was fit to generate adjusted odds ratios (OR). Intubation was associated with male gender (OR, 2.815; 95% confidence interval [CI], 1.348– 5.881; P = .006) and increasing body mass index (BMI) (OR, 1.053; 95% CI, 1.009–1.099; P = .019). Asthma was associated with lower odds for intubation (OR, 0.283; 95% CI, 0.108–0.74; P = .01). 80% of patients taking pre-hospital ICS were not intubated (n = 8). In-patient mortality was associated with male gender (OR, 2.44; 95% CI, 1.167–5.1; P = .018), older age (OR, 1.096; 95% CI, 1.052–1.142; P = \u3c. 001), and increasing BMI (OR, 1.079; 95% CI, 1.033–1.127; P = .001). Asthma was associated with lower in-patient mortality (OR, 0.221; 95% CI, 0.057–0.854; P = .029). CCI did not correlate with intubation (OR, 1.262; 95% CI, 0.923–1.724; P = .145) or inpatient mortality (OR, 0.896; 95% CI, 0.665–1.206; P = .468). Asthmatics hospitalized for COVID-19 had less adverse outcomes, and most patients taking pre-hospital ICS were not intubated. CCI score was not associated with intubation or inpatient mortality

    Role of Dlg5/lp-dlg, a Membrane-Associated Guanylate Kinase Family Protein, in Epithelial-Mesenchymal Transition in LLc-PK1 Renal Epithelial Cells

    Get PDF
    Discs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase adaptor family of proteins, some of which are involved in the regulation of epithelial-to-mesenchymal transition (EMT). Dlg5 has been described as a susceptibility gene for Crohn's disease; however, the physiological function of Dlg5 is unknown. We show here that transforming growth factor-β (TGF-β)-induced EMT suppresses Dlg5 expression in LLc-PK1 cells. Depletion of Dlg5 expression by knockdown promoted the expression of the mesenchymal marker proteins, fibronectin and α-smooth muscle actin, and suppressed the expression of E-cadherin. In addition, activation of JNK and p38, which are stimulated by TGF-β, was enhanced by Dlg5 depletion. Furthermore, inhibition of the TGF-β receptor suppressed the effects of Dlg5 depletion. These observations suggest that Dlg5 is involved in the regulation of TGF-βreceptor-dependent signals and EMT

    Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska

    Get PDF
    Erosion, sediment production and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 Myr, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes shows that erosion accelerated in response to Northern Hemisphere glacial intensification (~2.7 Ma) and that the 900-km long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (~100-kyr) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2 Myr mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the time scale of orogenic wedge response (Myrs). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and the possible influence of climate driven erosive processes that diverge from equilibrium on the million-year scale

    Impact of mediastinal, liver and lung 123I-metaiodobenzylguanidine (123I-MIBG) washout on calculated 123I-MIBG myocardial washout

    Get PDF
    PURPOSE: In planar (123)I-metaiodobenzylguanidine ((123)I-MIBG) myocardial imaging mediastinum (M) activity is often used as a background correction in calculating "washout" (WO). However, the most likely sources for counts that might produce errors in estimating myocardial (Myo) activity are lung (Lu) and liver (Li), which typically have higher counts/pixel (cpp) than M. The present study investigated the relationship between changes in Lu, Li and Myo activity between early and late planar (123)I-MIBG images, with comparison to M as the best estimator of non-specific background activity. METHODS: Studies on 98 subjects with both early (e) and late (l) planar (123)I-MIBG images were analysed. There were 68 subjects with chronic heart failure (CHF), 14 with hypertension (HTN) but no known heart disease and 16 controls (C). For each image, regions of interest (ROIs) were drawn: an irregular whole Myo, Lu, upper M and Li. For each ROI, WO was calculated as [(cpp(e)-cpp(l:decay corrected))/cpp(e)]x100%. RESULTS: Multivariable forward stepwise regression analysis showed that overall a significant proportion of the variation in Myo WO could be explained by a model containing M WO and Lu WO (37%, p < 0.001). Only in controls was M WO the sole variable explaining a significant proportion of the variation in Myo WO (27%, p = 0.023). CONCLUSION: Although increased Myo WO in CHF subjects reflects disease severity, part of the count differences measured on planar (123)I-MIBG myocardial images likely reflects changes in the adjacent and surrounding Lu tissue. The results for the controls suggest that this is the only group where a mediastinum correction alone may be appropriate for cardiac WO calculation

    BPAG1a and b Associate with EB1 and EB3 and Modulate Vesicular Transport, Golgi Apparatus Structure, and Cell Migration in C2.7 Myoblasts

    Get PDF
    BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5′ end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3′ end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts
    corecore