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Erosion, sediment production and routing on a tectonically active
continental margin reflect both tectonic and climatic processes;
partitioning the relative importance of these processes remains
controversial. Gulf of Alaska contains a preserved sedimentary
record of Yakutat Terrane collision with North America. Because
tectonic convergence in the coastal St. Elias orogen has been
roughly constant for 6 Myr, variations in its eroded sediments
preserved in the offshore Surveyor Fan constrain a budget of
tectonic material influx, erosion, and sediment output. Seismically
imaged sediment volumes calibrated with chronologies derived
from Integrated Ocean Drilling Program boreholes shows that
erosion accelerated in response to Northern Hemisphere glacial
intensification (∼2.7 Ma) and that the 900-km long Surveyor Chan-
nel inception appears to correlate with this event. However, tec-
tonic influx exceeded integrated sediment efflux over the interval
2.8-1.2 Ma. Volumetric erosion accelerated following the onset
of quasi-periodic (∼100-kyr) glacial cycles in the mid-Pleistocene
climate transition (1.2-0.7 Ma). Since then erosion and transport
of material out of the orogen has outpaced tectonic influx by
50-80%. Such a rapid net mass loss explains apparent increases
in exhumation rates inferred onshore from exposure dates and
mapped out-of-sequence fault patterns. The 1.2 Myr mass budget
imbalance must relax back toward equilibrium in balance with
tectonic influx over the time scale of orogenic wedge response
(Myrs). The St. Elias Range provides a key example of how active
orogenic systems respond to transient mass fluxes, and the possi-
ble influence of climate driven erosive processes that diverge from
equilibrium on the million-year scale.

tectonic-climate interactions | orogenesis | Mid-Pleistocene transition |
mass flux | ocean drilling

Introduction
Orogenesis reflects the balance of crustal material entering a
mountain belt to undergo shortening and uplift versus material
leaving the orogen through exhumation, erosion and sediment
transport1-5. Perturbations in the influx/efflux from the orogen
are expected to result in predictable changes in deformation
within the orogen as it attempts to reestablish equilibrium3. The
long-term sink for sediment transported out of mountain belts
is often in the deep sea, particularly in large submarine fans
where sediments accumulate at anomalously high rates (>10
cm/kyr) compared to deep-sea pelagic sedimentation6-8. Even

Significance

In coastal Alaska and the St. Elias orogen, over the past 1.2
million years mass flux leaving the mountains due to glacial
erosion exceeds the plate tectonic input. This finding under-
scores the power of climate in driving erosion rates, potential
feedback mechanisms linking climate, erosion, and tectonics,
and the complex nature of climate-tectonic coupling in tran-
sient responses toward longer-term dynamic equilibration of
landscapes with ever-changing environments.

Reserved for Publication Footnotes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

www.pnas.org --- --- PNAS Issue Date Volume Issue Number 1--??

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136



Submission PDF

Fig. 1. A) Gulf of Alaska study area with Last Glacial
Maximum glacial extent (light blue46), limit of exhum-
ing St. Elias orogen (dashed green), glacial flow paths
(blue arrows; dashed where presumed secondary con-
tribution), and glacially fed deep-sea Surveyor Chan-
nel system (black dashed). Yakutat Terrane shaded
in tan with deformation front of the Yakutat-North
American plate boundary as eastern thrust fault and
boundary with Pacific Plate as southern strike-slip
faults. Brown vectors mark mass influx to orogen from
Yakutat Terrane and portion of eroded sediments on
Pacific Plate that are subducted/accreted at the Aleu-
tian Trench. Seismic traverse in (B) is shown in green
and IODP Exp. 341 drillsites in yellow. B) Multichannel
seismic transect through Site U1417 where base of
seismic Sequence III (correlated to the MPT) is in green
and base of seismic Sequence II (correlated to the PPT)
is in light blue. Note the Surveyor Channel, a conduit
for sediment transport from the shelf to the deep
sea, which appears to become active near the PPT,
thus dominating sediment depositional processes for
all of Sequences II and III (since ∼2.6 Ma). Seismic sub-
sequence subdivision also shown for Sequence I (pre-
PPT). Depth of recovery at Site U1417 (thick green line)
near 6.4 sec TWTT.

Fig. 2. Representative topography through the
IODP Expedition 341 drill sites (see Fig. 1 for lo-
cation), and the principle lithologies at each site
along with chronologies and accumulation rates in
cm/kyr. Depths are in meters of core composite
depth below the seafloor (CCSF-B) that approximates
the drilled interval. B/M= Brunhes/Matuyama. G/M=
Gauss/Matuyama. Vertical exaggeration ∼18x.
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Fig. 3. Sediment thickness converted to sediment
accumulation rates (m/Ma) for Sequence II (A) and
Sequence III (B) within the Surveyor Fan. Mapping
only included portion of Surveyor Fan that correlates
with the St. Elias orogen based on the mapped Sur-
veyor Channel system. Average sequence thicknesses
converted from two-way-travel time isopach maps
(Fig. S1, S2) over the mapped region were used for
sediment volume calculations and then converted to
sediment accumulation rates as shown here using
U1417 and U1418 chronologies (Fig. S3, S4).

Fig. 4. Sedimentation rates at Sites U1417 binned at 0.4 Myr, respectively.
Dashed error bars are 1-sigma based on Monte-Carlo simulations (see Meth-
ods). Note drop in rates after initial increase following the culmination of
the iNHG (∼2.6 Ma) but sustained high rates since the MPT (∼1.2 Ma).
Global δ18O curve (LR04) is shown in pink with a smoothed version (200,
500 kyr window) shown in red to highlight continual cooling throughout
this interval. Yellow triangles show paleomagnetic constraints and blue
diamonds show biostratigraphic constraints with age ranges.

higher sedimentation rates (>100 cm/kyr) proximal to glacially
eroded regions 9-14 implies that wet-based glaciers are extremely
efficient agents of erosion. Observations and modeling have ar-
gued that erosion rates can influence tectonic processes15-19, but
the timescales of adjustment, and the role of landscape disequi-
librium, remain unclear. For example, exceptionally high local
sedimentation rates (100-1000 cm/kyr) recorded on the century
time scale13 have been suggested to reflect an unsustainable,
short-term erosion perturbation due to the Little Ice Age 20.

Time-varying sediment accumulation rates at individual sites
have been interpreted to reflect an allogenic control on sediment
production, especially related to a fundamental climate-induced
change in terrestrial sediment production in the Pleistocene21-22.
An alternate explanation is that autogenic sediment dispersal
processes and/or subsequent erosion of accumulated strata can
result in an apparent decrease in sediment accumulation rates
with increasing age (the so-called “Sadler Effect”, first described
by Moore and Heath 197723), especially as the averaging time
increases and in environments where accommodation limits ac-
cumulation (e.g., floodplains, continental shelves)24-25. Testing
between the allogenic and autogenic viewpoints requires spatially

continuous sedimentation data to address potential sampling
bias.

Southeastern Alaska represents a key location to constrain
such sampling biases and to examine the interactions among
climate, erosion, and orogenesis. Tectonic forcing creating the
St. Elias Mountains is a product of low-angle subduction of the
Yakutat Terrane (Fig. 1A); convergence has been essentially con-
stant since a reorganization of neighboring Pacific Plate motion
∼6 Ma17,26-27. Glacial influence is thought to have increased with
intensification of Northern Hemisphere glaciations at the Plio-
Pleistocene transition (PPT)28 and perhaps further increased with
the transition to 100 kyr cycles at themiddle Pleistocene transition
(MPT) 29-30. Sediments eroded from the orogen that are deposited
on the continental shelf either lie within the orogen if within
the Pamplona Zone fold and thrust belt16, or may re-enter the
orogen with the subducting Yakutat Terrane (Fig. 1A). Sediments
that bypass the shelf to be deposited on the deep-sea Surveyor
Fan or within the adjacent Aleutian Trench are permanently
removed from the orogen as these sediments will travel with the
Pacific Plate westward to be eventually accreted or subducted
along the Aleutian system (Fig. 1A)31. In 2013, Integrated Ocean
Drilling Program (IODP) Expedition 341 drilled a transect of
sites (U1417-U1421; Figs. 1, 2) across the Surveyor Fan in the
Gulf of Alaska and Bering-Malaspina slope and shelf offshore
of the St. Elias Mountains to examine the sedimentary record of
unroofing during a cooling global climatewith increasing intensity
of glaciations.

Results and Discussion
The Surveyor Fan covers >300,000 sq. km31, the western 2/3
of which is sourced from the St. Elias Mtns. Distal fan Site
U1417 reveals that the fan has been active since at least Miocene
time; preglacial fan sediments, referred to as Sequence I, were
recovered by drilling and are imaged and mapped by seismic
reflection data (Figs. 1B, 2). The first occurrence of gravel-sized
debris (>2 mm grain size) is now well dated and documents the
onset of ice-rafted deposition just prior to the Gauss-Matuyama
paleomagnetic reversal ∼300 m below the sea floor (2.581 Ma)
(Fig. S3, S4). This onset of ice rafting is consistent with recent
terrestrial cosmogenic-nuclide dating of the earliest apparent
Cordilleran Ice Sheet (2.64 Ma +0.4/-0.36 Ma32) and is inferred to
reflect the regional response to intensification of NorthernHemi-
sphere glaciation (iNHG)28. This depth/age within the cored
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interval lies a few meters above the base of geophysically mapped
Sequence II which is assigned an age of 2.8 Ma (Fig. 1B, 3A, S1,
see methods) and is comprised primarily of overbank deposits
from the Surveyor Channel. The Surveyor Channel system has
not avulsed since its initiation31 and appears to have formed at
about the same time as the first occurrence of tidewater glaciation
and the associated change in sedimentary system based on the
mapping of the Sequence I/II boundary from Channel to Site
U1417 (Fig. 1B).

Overlying Sequence II, Sequence III (also comprised of over-
bank strata from the Surveyor and related channels, but with
different seismic reflection character) (Fig. 1B, 3B, S2) thickens
significantly towards the orogen31. At distal Site U1417 the Se-
quence III/II boundary lies just below the 1.2Ma onset of themid-
Pleistocene transition (MPT)29-30 whereas at the proximal fan Site
U1418 the reflector ties to the upper Jaramillo paleomagnetic
reversal (0.99 Ma) within the MPT (Fig. 2, S3, S4). Sequence
II/III boundary is conservatively assigned an age ∼1.2 Ma. At
Site U1417, the post-upper Jaramillo average sedimentation rate
is 129 m/Ma; at Site U1418, it is 813 m/Ma, a six-fold increase
towards the orogen (Fig. 2). Sediment thicknesses and approxi-
mated sedimentation rates from seismic reflection isopachs sup-
port these rates as representative of large-scale spatial patterns,
and not local anomalies (Fig. 3B, S2; Table S1).

These results demonstrate elevated glacigenic sediment ac-
cumulation in the Gulf of Alaska in the middle-Late Pleistocene
thatmay be evenmore pronounced on the continental shelf/slope.
On the slope, Sites U1419 (drilled to 177 m) and U1421 (drilled
to 702 m), and at shelf Site U1420 (drilled to 1020 m), sediments
were all of normal paleomagnetic polarity and the Brunhes-
Matuyama paleomagnetic reversal was not encountered, indicat-
ing depositional ages <0.78 Ma (Fig. 2). Biostratigraphic data
from U1421 show these sediments to be < 0.3 Ma. Benthic
foraminiferal δ18O analyses at U1419 indicate the sediments re-
covered at that site to be<0.06Ma (Fig. S5). Thus, sustained Late
Pleistocene sedimentation rates on the slope average 200-300
cm/kyr, and on the shelf averages>100 cm/kyr (Fig. 2), consistent
with shoreward thickening of seismic units mapped throughout
the region. These remarkably high long-term accumulation rates
determined for the first time with an independent age-calibrated
offshore depositional record, are similar to rates within the last
century in Alaskan waters13,20, suggesting that the recent rates are
not local aberrations but are sustained features of the St Elias -
Gulf of Alaska erosion-deposition system.

Mapping the seismic reflector at the base of Sequence II
(∼2.8 Ma, early in the PPT) and the reflector between Sequences
II and III (∼1.2 Ma, early in the MPT) throughout the Surveyor
Fan provides a minimum estimate for the total sediment yield
over these time intervals. This use of a sediment volume to
examine the integrated sediment efflux from the St. Elias Moun-
tains allows us to avoid complications associated with potential
local bias33 since we have integrated all of the unsubducted
sediments in the system and are not dependent on sedimenta-
tion rates at discrete locations to examine flux through time.
The sediment volumes here are minimum estimates due to the
possibility that some sediment is lost to the system, but we have
estimated the volume of subducted sediments at the Aleutian
Trench based on MOREVEL2010 trench-normal Pacific Plate
velocity of 48 mm/yr (Fig. 1A) and the cross-sectional area of
sediments of Sequence III and II currently subducting/accreting.
The sediment volumes in the portion of the Surveyor Fan sourced
from the Bering-Bagley and the Seward-Malaspina-Hubbard-
Alsek drainages via the Surveyor Channel, are ∼29800 +/- 6700
km3 for Sequence II and ∼66700 +/- 13900 km3 for Sequence III
with additional Aleutian Trench subducting/accretion volumes

estimated at ∼9800 +/- 400 for Sequence II and ∼41900 +/- 13000
for Sequence III (Fig. 3, S1, and S2 and Table S1, see methods).

In support of a glacigenic influence on fan volume, preglacial
sedimentation rates at Site U1417 (averaged over 0.4 Ma in-
tervals to avoid shorter-term transient effects25; Fig. 4) of ∼30-
70 m/Ma from 5.2-2.8 Ma rose to peak values of 120 + 20
m/Ma between 2.4-2.0 Ma following the expansion of northern-
hemisphere glaciation near the Plio-Pleistocene boundary. Al-
though glaciation continued, at Site U1417 sedimentation rates
relaxed back to∼60 m/Ma from 1.6-1.2Ma, implying an apparent
reduction of regional glacial erosion. This inference assumes
that Site U1417 is representative of sediment dispersal to the
fan by the Surveyor Channel, which is supported by comparison
with Early-mid Pleistocene sedimentation rates modeled from
regional seismic isopachs (Fig. 3A, S1, S2). Sedimentation rates
at Sites U1417 increase starting at 1.2 Ma to peak at ∼140
m/Ma by 0.8 Ma, coincident with the onset of 100-kyr glacial
cycles (Fig. 4). Such a resurgence of rapid sedimentation with the
MPT ice expansion is expected, however sustained high sediment
yields through the Late Pleistocene is not predicted based on an
isostacy-only uplift response3,34.

Observed sedimentation rates from the Expedition 341 sites
(Fig. 2) and from sedimentation rates modeled from seismic
isopachs (Fig. 3B) in the distal Surveyor Fan over ∼1.2 Myr are
comparable to those of the Bengal Fan, where a similar increase
in sedimentation is observed in the middle to Late Pleistocene6-8.
Sites proximal to the Yakutat margin record some of the highest
sedimentation rates ever recorded in the deep-sea; for example
on the Bering-Malaspina slope, rates recorded for the last few
glacial cycles are a factor of two larger than the glacially fed
sedimentary deposit filling the south-central Chile Trench, pre-
viously the highest reported sedimentation rates observed over
these timescales14.

To place the MPT increase in Gulf of Alaska sediment yield
into an orogenic framework, we calculate the tectonic influx of
material into the St. Elias Range (Table S2, see methods) using
the length of the deformation front of the Pamplona Zone16, the
GPS-determined Yakutat-Southeast Alaska block convergence
rate (37 mm/yr)35 (Fig. 1A), and the thickness of sediments above
the Yakutat décollement based on seismic data36. We estimate
that∼36800 +/- 8800 km3 and∼31800 +/- 7500 km3 of glacimarine
sediments entered the orogen from 2.8-1.2 Ma and 1.2-0 Ma,
respectively (Table S2). Using our mapped Sequence II and III
sediment volumes including the estimating subducted/accreted
volumes and correcting for porosity (see methods), we determine
a total erosional efflux of ∼20500 +/- 4900 km3 for 2.8-1.2 Ma
and ∼56,400 +/- 13600 km3 for 1.2-0 Ma (Table S2). The early
Pleistocene influx exceeded efflux by ∼16300 +/- 10100 km3 i.e.,
at a greater than 95% confidence level there was a net positive
mass flux in the orogen. In contrast, since the onset of the MPT
efflux has exceeded influx by ∼24600 +/- 15,600 km3 (a ∼50%
net negative mass balance at a greater than 90% confidence
level) (Table S2, see methods) producing the marked change in
sediment volumes in the Surveyor Fan (Fig. 3, S1, and S2).

Implications
If the St. Elias orogen behaves as a critical-taper wedge, then

given enough time the sustained net efflux after the MPT should
result in structural responses. However, predicted dynamic equi-
librium timescales in models that seek a steady-state solution 3,19

are > 3Myr. The glaciated critical wedge model15,19 predicts that
if sufficient glacial erosion occurs to result in net efflux then the
active orogen would narrow and seek to maintain critical taper
through internal deformation (e.g., out-of-sequence thrusting).
Sandbox modeling further suggests that focused erosion within
one portion of a critical wedge can result in a sequence of fault
duplexes that focus rock uplift37, where these structures may be
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an expression of internal deformation due to erosion-reduced
taper. Onshore data including low-temperature thermochronol-
ogy and structural mapping within the fold and thrust belt have
been interpreted to display accelerated exhumation since the
mid-Pleistocene15 and structural response to focused erosion17.
Merging these onshore observations and our offshore determined
switch to net efflux for the last 1.2 Ma, we suggest that the MPT
has caused a perturbation in the tectonic-erosion balance of the
St. Elias orogen and that transient structural readjustment is
observable on timescales much shorter than those required to
reach steady state.

These results suggest that the longer and more intense 100
kyr glacial cycles since the MPT (relative to the shorter ∼40 kyr
period pre-MPT glacial cycles) increased the integrated ice cover
and erosion within the region of high relief originally created
by tectonics. Our drilling-derived, calibrated history of sediment
accumulation preserved within the proximal and distal Surveyor
Fan documents a pattern of exceptionally high accumulation rates
since the MPT, ranging from 130 cm/kyr (shelf) to 81 cm/kyr
(proximal fan) to 13 cm/kyr (distal fan) (Fig. 2); even higher rates
are observed on the proximal slope (Fig. 2, S5). We find that
highmodern rates of glacimarine sedimentation, which have been
previously attributed to a short-term transient response to Little
Ice Age glacial dynamics38, were sustained on average (although
likely in even more rapid pulses associated with glacial cycles)
since the onset of the MPT. At these timescales isostatic re-
sponses can be considered instantaneous due to the low viscosity
mantle within this active orogen setting.We assume that the topo-
graphically controlled drainage basin area did not greatly increase
across the MPT, suggesting several testable controls that could be
the key to this post-MPT effect: 1) increased volume of ice driving
an increase in instantaneous erosion rate, 2) increased duration
of glaciations driving an increased integrated eroded volume, 3)
larger area of glaciated topography, driving an increase in net
erosional efflux, and/or 4) an accelerated mechanism to remove
sediment previously stored within the orogen. The St. Elias oro-
gen since the MPT likely represents an end-member example of
rapid climate-driven erosion combined with efficient removal of
sediment entirely out of the orogen by glacial advances reaching
the shelf edge; this resulted in an orogen-scale mass imbalance
that persists for at least 1 Myr. Thus an active, glaciated, coastal
mountain belt may contrast with settings such as the Himalaya
where climate has been reported to have lesser influences on
orogenic development39-40. The continued existence of relief de-
spite the 1.2 Ma of net efflux likely reflects internal deformation
maintaining critical taper. Our results underscore the importance
of a high-fidelity time-series approach and regionally mapped
sediment volumes with dense seismic coverage to understand the
dynamic interplay of tectonics and erosion.

Methods
Calculation of mass accumulation rates based on the composite depth scales
(known as Core Composite depth below Sea Floor, CCSF-A) correct for ex-
pansion of the sediment column artifact during of the coring process41. This
corrected composite depth scale (CCSF-B) compresses the composite depth
scales to the same total thickness of the drilled interval41. Minimum and max-
imum shipboard age models are based on all available paleomagnetic and
biostratigraphic age datums (Figs. S3 and S4). The age models at Sites U1417,
U1418, and U1419 were constructed in the composite depth scales, and are
also provided in the CCSF-B depth scale. Uncertainties in the identification
of the paleomagnetic age datums were arbitrarily set to ±10 m CCSF-A due
to incomplete recovery and core quality. Uncertainty in the biostratigraphic
datums reflects the limited shipboard sampling intervals (mostly confined
to core-catcher samples separated by ∼9.5 m), and the presence of barren
zones. Outlier biostratigraphic datums were excluded. At Site U1418, all
identified paleomagnetic datums (Brunhes/Matuyama boundary, top and
base of the Jaramillo) were observed in Hole U1418F and included in the
shipboard minimum and maximum age models. Of the biostratigraphic
constraints, the youngest observed datum (last occurrence of the radiolarian
Lychnocanoma sakaii, 0.03 + 0.03 Ma- Fig. S3) was inconsistent between Holes
(91.7-101.5 m in Site U1418A, 125.6-131.0 m in U1418C, and 75.0-85.5 m

in Holes U1418D and E); we used the shallowest occurrence of this datum
in U1418D. An additional age constraint is provided by an interval of low
magnetic susceptibility observed in Holes U1418A, C, D, and E between 180.5
and 185.5 m CCSF-A, which is assumed to record the last interglacial event
(Marine Isotope Stage 5e, between 0.11 and 0.13 Ma). This datum aligns
well with other age constraints at Site U1418. The age model for Site U1419
was based on correlation of gamma density and magnetic susceptibility to
adjacent site-survey core EW0408-85JC dated by radiocarbon42, and based
on correlation of benthic foraminiferal data from shipboard core-catcher
samples to the LR04 reference record28. Oxygen isotopic data from Site
U1419 and core EW0408-85JC are illustrated in Figure S5.

Minimum and maximum age models (Fig. S4) were calculated based
on Bayesian interpolation and full uncertainty propagation using the Bacon
method43 for Site U1417. Sedimentation rates (Fig. 4) were calculated in fixed
time increments of 0.4 Ma to include multiple 100-kyr cycles and uncertain-
ties were calculated assuming the Bayesian age models spanned +1 sigma un-
certainties. At the interpolated age points, minimum and maximum depths
were calculated in 500 Monte-Carlo simulations of Gaussian white noise,
which created 500 realizations of sedimentation rate between each set of
age brackets. These simulations were used to calculate 1-sigma uncertainties
on each increment’s sedimentation rate. The use of fixed age increments for
calculation of sedimentation rates and uncertainties mitigates one possible
bias of the so-called Sadler Effect, in which longer time-increments may have
lower apparent sedimentation rates.

We mapped seismic reflectors to determine sediment volumes, and ages
for the reflectors were established by correlation with lithostratigraphy,
physical properties, and down-hole well log data at the drill sites (File SF-1).
Mapping thus defined a 1.2–0 Ma sequence (III) and a 2.8–1.2 Ma sequence
(II) (Figs. 3, S1, S2; File SF-1), spanning depositional regions sourced from
the Surveyor Channel31, deposits downslope of the Bering glacial trough,
and within the Aleutian Trench (Fig. 1A). Travel-time calculations made with
Landmark Decision Space were converted to sediment volumes using a core-
and down-hole established p-wave velocity of 1720 m/s, which is an average
of velocities from Sequences II and III at sites U1417 and U1418 (Table S1; File
SF-1). We include an estimate for the sediment subducted along the Aleutian
Trench using a trapezoidal approximation for thickness of Sequences III and
II currently being subducted past the Aleutian Trench deformation front
(average of three along-trench transects of sediment thickness) multiplied
by the average trench-normal MOREVEL2010 rate of regional Pacific Plate
subduction (Table S1; File SF-1). The summation of fan volume and subducted
sediment is a minimum estimate of total eroded sediment volume from
the St. Elias orogen; volume uncertainties include those of velocity, vertical
seismic resolution, subduction amount, and subduction rate (Table S1; File
SF-1). Shelf sediments are excluded from efflux calculations, as they may be
recycled into the orogen. The budget does not account for sediment lost
from the deposystem, for example by long-distance ice rafted transport, or
eolian transport.

Erosional efflux is determined using the subducted and fan sediment
volumes corrected for porosity using an Expedition 341 derived average
porosity of 0.4841. For tectonic influx, two cases for décollement depth
were used based on the maximum imaged depth of faulting in seismic
reflection data16,27 and correlated to a low-velocity zone in a jointly inverted
tomographic velocity model36. Values in Table S2 are based on the shallower
décollement depth but both options are included in Supplementary File SF-
1. The GPS-derived shortening estimate is modeled with a southeast Alaska
block that has relative motion with North America, and thus only shortening
within the orogen is included35. Sediment stored on the shelf seaward of the
deformation front is not included in the efflux, but is included in the influx
where above the shelf décollement. Porosity for the influx is set at 0.27 based
on sidewall cores from industry well OCS Y-0211 within the undeformed part
of the shelf44. The efflux-influx difference is then reported to discuss orogen
mass balance (Table S2, Figure S7, File SF-1).

All uncertainties reported are done using a square root of the sum of
the squares method (Tables S1, S2, S3; File SF-1). Uncertainty estimates for
volume, erosion rates, efflux and influx were calculated based on published
uncertainty or values established from data (File SF-1). Uncertainty in Sur-
veyor Fan area is calculated as the perimeter of the fan multiplied by the
average distance (15 km) between seismic reflection profiles. Uncertainty
in seismic resolution represent ¼ wavelength of the dominant frequency.
Subducted cross sectional area uncertainty is 26% of the thickness range
in three trench-parallel transects plus 5% due to non-St. Elias inputs (Fig.
1A). The uncertainty in amount of plate subducted is from MOREVEL2010.
Uncertainty in p-wave sound velocity and fan porosity is from Exp. 341 data.
For influx parameters, collision length uncertainty is due to uncertainty in the
exact terminations of the Pamplona Zone associated with the Fairweather
Fault to the northeast and the Transition Fault to the southwest (Fig. 1A).
Uncertainty in the collision rate is from published GPS measurements35. Shelf
porosity uncertainty is from published values from industry well OCS Y-
021144. Uncertainty in the influx thickness was set at 0.25 km (Table S2) with
an additional case for a décollement of 1 km deeper also examined (File SF-
1). Despite these uncertainties there is a 90% probability in the difference

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

Footline Author PNAS Issue Date Volume Issue Number 5

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680



Submission PDF

in the efflux-influx between Sequence III and Sequence II (Table S2; S4, File
SF-1).

Additional uncertainty analyses were performed using 104 (fan volume)
and 106 (efflux-influx) Monte Carlo simulations of Gaussian white noise
supplied with the standard deviation of all influx-efflux values. Mean values
of parameters and associated uncertainty used in the simulations with cor-
responding data sources are noted the supplementary Python code text files
(File SF-2). Matlab-formatted MAT files of Sequence II and II TWT isopachs
are provided as supplementary files for use with Python code (File SF-3). The
Monte Carlo modeling was also adapted for sensitivity testing, where the
value of each parameter was varied to span from 50-150% of the mean value,
leaving all the other values set to their mean value and then the net change
in flux value was calculated. Based on the sensitivity tests, for influx-efflux
Seq III results are most affected by fan porosity whereas for Seq. II results

are most affected by the depth to the décollement. The effect of depth to
the décollement on mass balance using the Monte Carlo tests are shown in
Table S4, Fig. S7 and File SF-1. The sign of the flux is also affected by length
of deformation front and porosity on the shelf and by volume and cross-
sectional area of subducting/accreting sediments in the fan.

For completeness, determination of sediment yield based erosion rates
are included (Table S3)45. Equivalent erosion rates are shown; however, the
validity of these values depends on establishing the glacial erosion area
through time, which has yet to be established for this margin. An estimate of
this area for the Last Glacial Maximum is based on assuming maximum glacial
erosion only for the areas of high relief between 100-1300 m elevation or 25-
70% of total LGM drainage (the range limit of the equilibrium line altitude
at modern and glacial maxima46,47) (Fig. S6).
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