1,184 research outputs found

    Long-term peritoneal dialysis and encapsulating peritoneal sclerosis in children

    Get PDF
    Encapsulating peritoneal sclerosis (EPS) is the most serious complication of long-term peritoneal dialysis (PD), with a mortality rate that exceeds 30%. There have been many reports of the incidence of EPS being strongly correlated to the duration of PD. Patients on PD for longer than 5 years, and especially those receiving this treatment for more than 8 years, should undergo careful and repeated surveillance for risk factors associated with the development of EPS. The development of ultrafiltration failure, a high dialysate/plasma creatinine ratio, as determined by the peritoneal equilibration test, peritoneal calcification, a persistently elevated C-reactive protein level, and severe peritonitis in patients on PD for longer than 8 years are signals that should prompt the clinician to consider terminating PD as a possible means of preventing the development of EPS. The impact of the newer, biocompatible PD solutions on the incidence of EPS has not yet been determined

    AlGaAs/GaAs transverse junction stripe lasers with distributed feedback

    Get PDF
    Transverse junction stripe (TJS) lasers with periodic feedback were fabricated in two geometries. An interferometric and wet chemical etching technique was used to create a feedback grating across the entire pumping region for the distributed feedback (DFB) TJS laser and to create the separate distributed Bragg reflectors/DBR) for the TJS/DBR laser. The TJS/DFB laser was a double heterostructure device grown by liquid phase epitaxy (LPE) and had a third order grating etched in the top ALO.2GaO.8As layer. The grating was buried by growing an ALO.35GaO.65As layer on the grating by metal organic chemical vapor deposition (MO-CVD). The TJS/DBR laser was also fabricated in an LPE double heterostructure. The top AlGaAs layer was thinned to 0.1 micron over more than half of the laser so that the grating would be close to the GaAs active layer and optical field. Single mode operation in both configurations was obtained. The thermal shift of the laser wavelength in both cases was less than 1 Angstrom/deg K, compared to the 3 Angstrom/deg K shift of the spontaneous emission peak

    Broadband Optical Serrodyne Frequency Shifting

    Full text link
    We demonstrate serrodyne frequency shifting of light from 200 MHz to 1.2 GHz with an efficiency of better than 60 percent. The frequency shift is imparted by an electro-optic phase modulator driven by a high-frequency, high-fidelity sawtooth waveform that is passively generated by a commercially available Non-Linear Transmission Line (NLTL). We also implement a push-pull configuration using two serrodyne-driven phase modulators allowing for continuous tuning between -1.6 GHz and +1.6 GHz. Compared to competing technologies, this technique is simple and robust, and offers the largest available tuning range in this frequency band.Comment: 3 pages, 4 figure

    The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration

    Get PDF
    Macrophages are crucial for tissue homeostasis. Based on their activation, they might display classical/M1 or alternative/M2 phenotypes. M1 macrophages produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO). M2 macrophages upregulate arginase-1 and reduce NO and ROS levels; they also release anti-inflammatory cytokines, growth factors, and polyamines, thus promoting angiogenesis and tissue healing. Moreover, M1 and M2 display key metabolic differences; M1 polarization is characterized by an enhancement in glycolysis and in the pentose phosphate pathway (PPP) along with a decreased oxidative phosphorylation (OxPhos), whereas M2 are characterized by an efficient OxPhos and reduced PPP. Recent Advances: The glutamine-related metabolism has been discovered as crucial for M2 polarization. Vice versa, flux discontinuities in the Krebs cycle are considered additional M1 features; they lead to increased levels of immunoresponsive gene 1 and itaconic acid, to isocitrate dehydrogenase 1-downregulation and to succinate, citrate, and isocitrate over-expression

    Characterization and Compensation of the Residual Chirp in a Mach-Zehnder-Type Electro-Optical Intensity Modulator

    Full text link
    We utilize various techniques to characterize the residual phase modulation of a fiber-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.Comment: 11 pages, 6 figure

    A new application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces

    Full text link
    The small perturbations method has been extensively used for waves scattering by rough surfaces. The standard method developped by Rice is difficult to apply when we consider second and third order of scattered fields as a function of the surface height. Calculations can be greatly simplified with the use of reduced Rayleigh equations, because one of the unknown fields can be eliminated. We derive a new set of four reduced equations for the scattering amplitudes, which are applied to the cases of a rough conducting surface, and to a slab where one of the boundary is a rough surface. As in the one-dimensional case, numerical simulations show the appearance of enhanced backscattering for these structures.Comment: RevTeX 4 style, 38 pages, 16 figures, added references and comments on the satellites peak

    Chemical models important in understanding the ways in which chromate can damage DNA.

    Get PDF
    Chromate is an established human carcinogen. There have been many studies of the reactivity of chromate aimed at improving understanding of chromate toxicity. In the present paper a number of conclusions of these studies are reviewed and considered in the light of new results obtained in our laboratories. A number of hypotheses are considered; it is concluded, however, that it is impossible to reconcile the generation of strand breaks by chromate during its reduction by glutathione with any simple mechanism involving the generation of DNA lesions by free hydroxyl radicals. Kinetic, spin-trapping, and competition kinetic studies, based on a strand-breaking assay, are reported in support of this conclusion

    Optimum detection for extracting maximum information from symmetric qubit sets

    Get PDF
    We demonstrate a class of optimum detection strategies for extracting the maximum information from sets of equiprobable real symmetric qubit states of a single photon. These optimum strategies have been predicted by Sasaki et al. [Phys. Rev. A{\bf 59}, 3325 (1999)]. The peculiar aspect is that the detections with at least three outputs suffice for optimum extraction of information regardless of the number of signal elements. The cases of ternary (or trine), quinary, and septenary polarization signals are studied where a standard von Neumann detection (a projection onto a binary orthogonal basis) fails to access the maximum information. Our experiments demonstrate that it is possible with present technologies to attain about 96% of the theoretical limit.Comment: 10 pages, 11 figures, to be submitted to Phys. Rev. A Converted to REVTeX4 format, and a few other minor modifications according to the comments from PRA referre
    • …
    corecore