240 research outputs found

    Thin films flowing down inverted substrates: Three dimensional flow

    Full text link
    We study contact line induced instabilities for a thin film of fluid under destabilizing gravitational force in three dimensional setting. In the previous work (Phys. Fluids, {\bf 22}, 052105 (2010)), we considered two dimensional flow, finding formation of surface waves whose properties within the implemented long wave model depend on a single parameter, D=(3Ca)1/3cotαD=(3Ca)^{1/3}\cot\alpha, where CaCa is the capillary number and α\alpha is the inclination angle. In the present work we consider fully 3D setting and discuss the influence of the additional dimension on stability properties of the flow. In particular, we concentrate on the coupling between the surface instability and the transverse (fingering) instabilities of the film front. We furthermore consider these instabilities in the setting where fluid viscosity varies in the transverse direction. It is found that the flow pattern strongly depends on the inclination angle and the viscosity gradient

    Three-dimensional localized coherent structures of surface turbulence. III Experiment and model validation

    Full text link
    The paper continues a series of publications devoted to the 3D nonlinear localized coherent structures on the surface of vertically falling liquid films. The work is primarily focussed on experimental investigations. We study: (i) instabilities and transitions leading to 3D coherent structures; (ii) characteristics of these structures. Some nonstationary effects are also studied numerically. Our experimental results, as well as the results of other investigators, are in a good agreement with our theoretical and numerical predictions.Comment: 42 pages, 15 figure

    Unusual formations of the free electromagnetic field in vacuum

    Full text link
    It is shown that there are exact solutions of the free Maxwell equations (FME) in vacuum allowing an existence of stable spherical formations of the free magnetic field and ring-like formations of the free electric field. It is detected that a form of these spheres and rings does not change with time in vacuum. It is shown that these convergent solutions are the result of an interference of some divergent solutions of FME. One can surmise that these electromagnetic formations correspond to Kapitsa's hypothesis about interference origin and a structure of fireball.Comment: Revtex-file, without figures. To get lournal-pdf-copy with figures contact with [email protected]

    Diffusion Enhancement in a Periodic Potential under High-Frequency Space-Dependent Forcing

    Get PDF
    We study the long-time behavior of underdamped Brownian particle moving through a viscous medium and in a systematic potential, when it is subjected to a space-dependent high-frequency periodic force. When the frequency is very large, much larger than all other relevant system-frequencies, there is a Kapitsa time-window wherein the effect of frequency dependent forcing can be replaced by a static effective potential. Our new analysis includes the case when the forcing, in addition to being frequency-dependent, is space-dependent as well. The results of the Kapitsa analysis then lead to additional contributions to the effective potential. These are applied to the numerical calculation of the diffusion coefficient (D) for a Brownian particle moving in a periodic potential. Presented are numerical results, which are in excellent agreement with theoretical predictions and which indicate a significant enhancement of D due to the space-dependent forcing terms. In addition we study the transport property (current) of underdamped Brownian particles in a ratchet potential.Comment: RevTex 6 pages, 5 figure

    Coherence lifetimes of excitations in an atomic condensate due to the thin spectrum

    Full text link
    We study the quantum coherence properties of a finite sized atomic condensate using a toy-model and the thin spectrum model formalism. The decoherence time for a condensate in the ground state, nominally taken as a variational symmetry breaking state, is investigated for both zero and finite temperatures. We also consider the lifetimes for Bogoliubov quasi-particle excitations, and contrast them to the observability window determined by the ground state coherence time. The lifetimes are shown to exhibit a general characteristic dependence on the temperature, determined by the thin spectrum accompanying the spontaneous symmetry breaking ground state

    Stochastic stabilization of cosmological photons

    Full text link
    The stability of photon trajectories in models of the Universe that have constant spatial curvature is determined by the sign of the curvature: they are exponentially unstable if the curvature is negative and stable if it is positive or zero. We demonstrate that random fluctuations in the curvature provide an additional stabilizing mechanism. This mechanism is analogous to the one responsible for stabilizing the stochastic Kapitsa pendulum. When the mean curvature is negative it is capable of stabilizing the photon trajectories; when the mean curvature is zero or positive it determines the characteristic frequency with which neighbouring trajectories oscillate about each other. In constant negative curvature models of the Universe that have compact topology, exponential instability implies chaos (e.g. mixing) in the photon dynamics. We discuss some consequences of stochastic stabilization in this context.Comment: 4 pages, 3 postscript figures in color which are also appropriate for black and white printers; v2 emphasizes relevance to flat as well as negatively curved cosmologies; to appear in J. Phys.

    Stable dynamics in forced systems with sufficiently high/low forcing frequency

    Get PDF
    We consider a class of parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency of the forcing is sufficiently high, KAM theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency forcing, but in that case we need the amplitude of the forcing to be not too large; however we are still able to consider amplitudes of the forcing which are outside of the perturbation regime. Our results are illustrated by means of numerical simulations for the system of a forced cubic oscillator. In addition, we find numerically that the dynamics are stable even when the forcing amplitude is very large (beyond the range of validity of the analytical results), provided the frequency of the forcing is taken correspondingly low.Comment: 12 pages, 3 figures, 2 table
    corecore