We study the quantum coherence properties of a finite sized atomic condensate
using a toy-model and the thin spectrum model formalism. The decoherence time
for a condensate in the ground state, nominally taken as a variational symmetry
breaking state, is investigated for both zero and finite temperatures. We also
consider the lifetimes for Bogoliubov quasi-particle excitations, and contrast
them to the observability window determined by the ground state coherence time.
The lifetimes are shown to exhibit a general characteristic dependence on the
temperature, determined by the thin spectrum accompanying the spontaneous
symmetry breaking ground state