531 research outputs found

    Realistic modelling of quantum point contacts subject to high magnetic fields and with current bias at out of linear response regime

    Full text link
    The electron and current density distributions in the close proximity of quantum point contacts (QPCs) are investigated. A three dimensional Poisson equation is solved self-consistently to obtain the electron density and potential profile in the absence of an external magnetic field for gate and etching defined devices. We observe the surface charges and their apparent effect on the confinement potential, when considering the (deeply) etched QPCs. In the presence of an external magnetic field, we investigate the formation of the incompressible strips and their influence on the current distribution both in the linear response and out of linear response regime. A spatial asymmetry of the current carrying incompressible strips, induced by the large source drain voltages, is reported for such devices in the non-linear regime.Comment: 16 Pages, 9 Figures, submitted to PR

    Current direction induced rectification effect on (integer) quantized Hall plateaus

    Full text link
    Current polarization induced rectification of the quantized Hall plateaus (QHPs) is studied within a Hartree type mean field approximation for asymmetrically depleted samples. We first investigate the existence of the current carrying incompressible strips (ISs), by solving the self-consistent equations, and their influence on magneto-transport (MT) properties. Next, the widths of the ISs are examined in terms of the steepness of the confining potential profile considering gate defined Hall bars. The corresponding MT coefficients are calculated using a local Ohm's law for a large fixed current and are compared for symmetric and asymmetric depleted samples. We predict that, the extend of the QHPs strongly depend on the current polarization, in the out of linear response regime, when considering asymmetrically depleted samples. Our results, concerning the extend of the QHPs depending on the current polarization are in contrast to the ones of the conventional theories of the integer quantized Hall effect (IQHE). We propose certain experimental conditions to test our theoretical predictions at high mobility, narrow samples.Comment: 4 pages, 3 figures, submitted to Phys. Re

    Self-consistent Coulomb picture of an electron-electron bilayer system

    Full text link
    In this work we implement the self-consistent Thomas-Fermi approach and a local conductivity model to an electron-electron bilayer system. The presence of an incompressible strip, originating from screening calculations at the top (or bottom) layer is considered as a source of an external potential fluctuation to the bottom (or top) layer. This essentially yields modifications to both screening properties and the magneto-transport quantities. The effect of the temperature, inter-layer distance and density mismatch on the density and the potential fluctuations are investigated. It is observed that the existence of the incompressible strips plays an important role simply due to their poor screening properties on both screening and the magneto-resistance (MR) properties. Here we also report and interpret the observed MR Hysteresis within our model.Comment: 12 pages, 12 figures, submitted to PR

    Theoretical Investigation of Local Electron Temperature in Quantum Hall Systems

    Full text link
    In this work we solve thermo-hydrodynamical equations considering a two dimensional electron system in the integer quantum Hall regime, to calculate the spatial distribution of the local electron temperature. We start from the self-consistently calculated electrostatic and electrochemical potentials in equilibrium. Next, by imposing an external current, we investigate the variations of the electron temperature in the linear-response regime. Here a local relation between the electron density and conductivity tensor elements is assumed. Following the Ohm's law we obtain local current densities and by implementing the results of the thermo-hydrodynamical theory, calculate the local electron temperature. We observe that the local electron temperature strongly depends on the formation of compressible and incompressible strips.Comment: 10 pages, 4 figure

    Lymphangitis carcinomatosa as an unusual presentation of renal cell carcinoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Renal cell carcinoma is a common adult malignancy that can present incidentally or with a multitude of clinical symptoms and signs. Metastatic spread is frequent, occurring via haematogenous and lymphatic routes, although it does not typically present with lymphangitis carcinomatosa.</p> <p>Case presentation</p> <p>We describe a patient who presented with cough and increasing dyspnoea. Initial chest x-ray and computed tomography were consistent with lymphangitis carcinomatosa that proved secondary to underlying renal cell carcinoma.</p> <p>Conclusion</p> <p>Lymphangitis carcinomatosa occurs with many different primary tumours and can rarely be the presenting feature of renal cell carcinoma. Underlying renal cell carcinoma should be considered in the differential diagnosis of lymphangitis carcinomatosa and excluded with subsequent investigations.</p

    Spike-Train Responses of a Pair of Hodgkin-Huxley Neurons with Time-Delayed Couplings

    Full text link
    Model calculations have been performed on the spike-train response of a pair of Hodgkin-Huxley (HH) neurons coupled by recurrent excitatory-excitatory couplings with time delay. The coupled, excitable HH neurons are assumed to receive the two kinds of spike-train inputs: the transient input consisting of MM impulses for the finite duration (MM: integer) and the sequential input with the constant interspike interval (ISI). The distribution of the output ISI ToT_{\rm o} shows a rich of variety depending on the coupling strength and the time delay. The comparison is made between the dependence of the output ISI for the transient inputs and that for the sequential inputs.Comment: 19 pages, 4 figure

    Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises

    Full text link
    Dynamics of an ensemble of NN-unit FitzHugh-Nagumo (FN) neurons subject to white noises has been studied by using a semi-analytical dynamical mean-field (DMF) theory in which the original 2N2 N-dimensional {\it stochastic} differential equations are replaced by 8-dimensional {\it deterministic} differential equations expressed in terms of moments of local and global variables. Our DMF theory, which assumes weak noises and the Gaussian distribution of state variables, goes beyond weak couplings among constituent neurons. By using the expression for the firing probability due to an applied single spike, we have discussed effects of noises, synaptic couplings and the size of the ensemble on the spike timing precision, which is shown to be improved by increasing the size of the neuron ensemble, even when there are no couplings among neurons. When the coupling is introduced, neurons in ensembles respond to an input spike with a partial synchronization. DMF theory is extended to a large cluster which can be divided into multiple sub-clusters according to their functions. A model calculation has shown that when the noise intensity is moderate, the spike propagation with a fairly precise timing is possible among noisy sub-clusters with feed-forward couplings, as in the synfire chain. Results calculated by our DMF theory are nicely compared to those obtained by direct simulations. A comparison of DMF theory with the conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice

    An associative memory of Hodgkin-Huxley neuron networks with Willshaw-type synaptic couplings

    Full text link
    An associative memory has been discussed of neural networks consisting of spiking N (=100) Hodgkin-Huxley (HH) neurons with time-delayed couplings, which memorize P patterns in their synaptic weights. In addition to excitatory synapses whose strengths are modified after the Willshaw-type learning rule with the 0/1 code for quiescent/active states, the network includes uniform inhibitory synapses which are introduced to reduce cross-talk noises. Our simulations of the HH neuron network for the noise-free state have shown to yield a fairly good performance with the storage capacity of αc=Pmax/N0.42.4\alpha_c = P_{\rm max}/N \sim 0.4 - 2.4 for the low neuron activity of f0.040.10f \sim 0.04-0.10. This storage capacity of our temporal-code network is comparable to that of the rate-code model with the Willshaw-type synapses. Our HH neuron network is realized not to be vulnerable to the distribution of time delays in couplings. The variability of interspace interval (ISI) of output spike trains in the process of retrieving stored patterns is also discussed.Comment: 15 pages, 3 figures, changed Titl

    Stochastic Resonance of Ensemble Neurons for Transient Spike Trains: A Wavelet Analysis

    Full text link
    By using the wavelet transformation (WT), we have analyzed the response of an ensemble of NN (=1, 10, 100 and 500) Hodgkin-Huxley (HH) neurons to {\it transient} MM-pulse spike trains (M=13M=1-3) with independent Gaussian noises. The cross-correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the {\it denoising} method within the WT, by which the noise contribution is extracted from output signals. Although the response of a single (N=1) neuron to sub-threshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross-correlation and SNR is shown to be much improved by increasing the value of NN: a population of neurons play an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for supra-threshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for sub-threshold inputs.Comment: 20 pages, 4 figure
    corecore