616 research outputs found
Self-consistent Coulomb picture of an electron-electron bilayer system
In this work we implement the self-consistent Thomas-Fermi approach and a
local conductivity model to an electron-electron bilayer system. The presence
of an incompressible strip, originating from screening calculations at the top
(or bottom) layer is considered as a source of an external potential
fluctuation to the bottom (or top) layer. This essentially yields modifications
to both screening properties and the magneto-transport quantities. The effect
of the temperature, inter-layer distance and density mismatch on the density
and the potential fluctuations are investigated. It is observed that the
existence of the incompressible strips plays an important role simply due to
their poor screening properties on both screening and the magneto-resistance
(MR) properties. Here we also report and interpret the observed MR Hysteresis
within our model.Comment: 12 pages, 12 figures, submitted to PR
Realistic modelling of quantum point contacts subject to high magnetic fields and with current bias at out of linear response regime
The electron and current density distributions in the close proximity of
quantum point contacts (QPCs) are investigated. A three dimensional Poisson
equation is solved self-consistently to obtain the electron density and
potential profile in the absence of an external magnetic field for gate and
etching defined devices. We observe the surface charges and their apparent
effect on the confinement potential, when considering the (deeply) etched QPCs.
In the presence of an external magnetic field, we investigate the formation of
the incompressible strips and their influence on the current distribution both
in the linear response and out of linear response regime. A spatial asymmetry
of the current carrying incompressible strips, induced by the large source
drain voltages, is reported for such devices in the non-linear regime.Comment: 16 Pages, 9 Figures, submitted to PR
Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol
Background: Climate change and high rates of global carbon emissions have focussed attention on the need for high-quality monitoring systems to assess how much carbon is present in terrestrial systems and how these change over time. The choice of system to adopt should be guided by good science. There is a growing body of scientific and technical information on ground-based and remote sensing methods of carbon measurement. The adequacy and comparability of these different systems have not been fully evaluated. Methods: A systematic review will compare methods of assessing carbon stocks and carbon stock changes in key land use categories, including, forest land, cropland, grassland, and wetlands, in terrestrial carbon pools that can be accounted for under the Kyoto protocol (above- ground biomass, below-ground biomass, dead wood, litter and soil carbon). Assessing carbon in harvested wood products will not be considered in this review. Discussion: Developing effective mitigation strategies to reduce carbon emissions and equitable adaptation strategies to cope with increasing global temperatures will rely on robust scientific information that is free from biases imposed by national and commercial interests. A systematic review of the methods used for assessing carbon stocks and carbon stock changes will contribute to the transparent analysis of complex and often contradictory science.</p
Theoretical Investigation of Local Electron Temperature in Quantum Hall Systems
In this work we solve thermo-hydrodynamical equations considering a two
dimensional electron system in the integer quantum Hall regime, to calculate
the spatial distribution of the local electron temperature. We start from the
self-consistently calculated electrostatic and electrochemical potentials in
equilibrium. Next, by imposing an external current, we investigate the
variations of the electron temperature in the linear-response regime. Here a
local relation between the electron density and conductivity tensor elements is
assumed. Following the Ohm's law we obtain local current densities and by
implementing the results of the thermo-hydrodynamical theory, calculate the
local electron temperature. We observe that the local electron temperature
strongly depends on the formation of compressible and incompressible strips.Comment: 10 pages, 4 figure
Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises
Dynamics of an ensemble of -unit FitzHugh-Nagumo (FN) neurons subject to
white noises has been studied by using a semi-analytical dynamical mean-field
(DMF) theory in which the original -dimensional {\it stochastic}
differential equations are replaced by 8-dimensional {\it deterministic}
differential equations expressed in terms of moments of local and global
variables. Our DMF theory, which assumes weak noises and the Gaussian
distribution of state variables, goes beyond weak couplings among constituent
neurons. By using the expression for the firing probability due to an applied
single spike, we have discussed effects of noises, synaptic couplings and the
size of the ensemble on the spike timing precision, which is shown to be
improved by increasing the size of the neuron ensemble, even when there are no
couplings among neurons. When the coupling is introduced, neurons in ensembles
respond to an input spike with a partial synchronization. DMF theory is
extended to a large cluster which can be divided into multiple sub-clusters
according to their functions. A model calculation has shown that when the noise
intensity is moderate, the spike propagation with a fairly precise timing is
possible among noisy sub-clusters with feed-forward couplings, as in the
synfire chain. Results calculated by our DMF theory are nicely compared to
those obtained by direct simulations. A comparison of DMF theory with the
conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice
Spike-Train Responses of a Pair of Hodgkin-Huxley Neurons with Time-Delayed Couplings
Model calculations have been performed on the spike-train response of a pair
of Hodgkin-Huxley (HH) neurons coupled by recurrent excitatory-excitatory
couplings with time delay. The coupled, excitable HH neurons are assumed to
receive the two kinds of spike-train inputs: the transient input consisting of
impulses for the finite duration (: integer) and the sequential input
with the constant interspike interval (ISI). The distribution of the output ISI
shows a rich of variety depending on the coupling strength and the
time delay. The comparison is made between the dependence of the output ISI for
the transient inputs and that for the sequential inputs.Comment: 19 pages, 4 figure
An associative memory of Hodgkin-Huxley neuron networks with Willshaw-type synaptic couplings
An associative memory has been discussed of neural networks consisting of
spiking N (=100) Hodgkin-Huxley (HH) neurons with time-delayed couplings, which
memorize P patterns in their synaptic weights. In addition to excitatory
synapses whose strengths are modified after the Willshaw-type learning rule
with the 0/1 code for quiescent/active states, the network includes uniform
inhibitory synapses which are introduced to reduce cross-talk noises. Our
simulations of the HH neuron network for the noise-free state have shown to
yield a fairly good performance with the storage capacity of for the low neuron activity of . This
storage capacity of our temporal-code network is comparable to that of the
rate-code model with the Willshaw-type synapses. Our HH neuron network is
realized not to be vulnerable to the distribution of time delays in couplings.
The variability of interspace interval (ISI) of output spike trains in the
process of retrieving stored patterns is also discussed.Comment: 15 pages, 3 figures, changed Titl
Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors
We have constructed a GEANT4-based detailed software model of photon
transport in plastic scintillator blocks and have used it to study the NEMO-3
and SuperNEMO calorimeters employed in experiments designed to search for
neutrinoless double beta decay. We compare our simulations to measurements
using conversion electrons from a calibration source of and show
that the agreement is improved if wavelength-dependent properties of the
calorimeter are taken into account. In this article, we briefly describe our
modeling approach and results of our studies.Comment: 16 pages, 10 figure
Stochastic Resonance of Ensemble Neurons for Transient Spike Trains: A Wavelet Analysis
By using the wavelet transformation (WT), we have analyzed the response of an
ensemble of (=1, 10, 100 and 500) Hodgkin-Huxley (HH) neurons to {\it
transient} -pulse spike trains () with independent Gaussian noises.
The cross-correlation between the input and output signals is expressed in
terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is
evaluated by using the {\it denoising} method within the WT, by which the noise
contribution is extracted from output signals. Although the response of a
single (N=1) neuron to sub-threshold transient signals with noises is quite
unreliable, the transmission fidelity assessed by the cross-correlation and SNR
is shown to be much improved by increasing the value of : a population of
neurons play an indispensable role in the stochastic resonance (SR) for
transient spike inputs. It is also shown that in a large-scale ensemble, the
transmission fidelity for supra-threshold transient spikes is not significantly
degraded by a weak noise which is responsible to SR for sub-threshold inputs.Comment: 20 pages, 4 figure
Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies
Fc γ receptor (FcγR) coengagement can facilitate antibody-mediated receptor activation in target cells. In particular, agonistic antibodies that target tumor necrosis factor receptor (TNFR) family members have shown dependence on expression of the inhibitory FcγR, FcγRIIB. It remains unclear if engagement of FcγRIIB also extends to the activities of antibodies targeting immunoregulatory TNFRs expressed by T cells. We have explored the requirement for activating and inhibitory FcγRs for the antitumor effects of antibodies targeting the TNFR glucocorticoid-induced TNFR-related protein (GITR; TNFRSF18; CD357) expressed on activated and regulatory T cells (T reg cells). We found that although FcγRIIB was dispensable for the in vivo efficacy of anti-GITR antibodies, in contrast, activating FcγRs were essential. Surprisingly, the dependence on activating FcγRs extended to an antibody targeting the non-TNFR receptor CTLA-4 (CD152) that acts as a negative regulator of T cell immunity. We define a common mechanism that correlated with tumor efficacy, whereby antibodies that coengaged activating FcγRs expressed by tumor-associated leukocytes facilitated the selective elimination of intratumoral T cell populations, particularly T reg cells. These findings may have broad implications for antibody engineering efforts aimed at enhancing the therapeutic activity of immunomodulatory antibodies
- …
