31 research outputs found

    Comparison of measured and calculated thermophysical properties of nickel super-alloys

    Get PDF
    Three real grades of nickel super-alloys (IN 713LC, IN 738LC and IN 792-5A) were investigated and values of temperatures of phase transformations and latent heats of melting were obtained. All investigated quantities are very important for thermodynamic and kinetic modelling. Moreover, these data are also valuable for a lot of software used for technological processes modelling. Experimental values were obtained using Differential Thermal Analysis (DTA) measurements. Calculations were performed using Thermo-Calc 3.1 software with the use of three different databases (SSOL5, TTNI8 and TCNI6). Comparison and discussion of experimental and calculated data was performed

    The Weakening Outburst of the Young Eruptive Star V582 Aur

    Get PDF
    V582 Aur is a pre-main sequence FU Orionis type eruptive star, which entered a brightness minimum in 2016 March due to changes in the line-of-sight extinction. Here, we present and analyze new optical BB, VV, RCR_C and ICI_C band multiepoch observations and new near-infrared JJ, HH and KSK_S band photometric measurements from 2018 January-2019 February, as well as publicly available mid-infrared WISE data. We found that the source shows a significant optical-near-infrared variability, and the current brightness minimum has not completely finished yet. If the present dimming originates from the same orbiting dust clump that caused a similar brightness variation in 2012, than our results suggest a viscous spreading of the dust particles along the orbit. Another scenario is that the current minimum is caused by a dust structure, that is entering and leaving the inner part of the system. The WISE measurements could be consistent with this scenario. Our long-term data, as well as an accretion disk modeling hint at a general fading of V582 Aur, suggesting that the source will reach the quiescent level in \sim80 years.Comment: 8 pages, 4 figures, accepted for publication in Ap

    K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type Ia Supernova

    Get PDF
    We present an exquisite 30 minute cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and continuing past peak brightness. These data are supplemented by multi- color Panoramic Survey Telescope (Pan-STARRS1) and Rapid Response System 1 and Cerro Tololo Inter-American Observatory 4 m Dark Energy Camera (CTIO 4-m DECam) observations obtained within hours of explosion. The K2 light curve has an unusual two-component shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic rise as seen for typical supernovae (SNe) Ia. This “flux excess” relative to canonical SN Ia behavior is confirmed in our i-band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess peaks 2.14 ± 0.04 days after explosion, has a FWHM of 3.12 ± 0.04 days, a blackbody temperature of T=17,{500}-9,000+11,500 K, a peak luminosity of 4.3+/- 0.2× {10}37 {erg} {{{s}}}-1, and a total integrated energy of 1.27+/- 0.01× {10}43 {erg}. We compare SN 2018oh to several models that may provide additional heating at early times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance of ∼2× {10}12 {cm} based on our early color measurements, although the exact distance depends on the uncertain viewing angle. Additional confirmation of a companion interaction in future modeling and observations of SN 2018oh would provide strong support for a single-degenerate progenitor system

    A Multi-Epoch, Multiwavelength Study of the Classical FUor V1515 Cyg Approaching Quiescence

    Get PDF
    Historically, FU Orionis-type stars are low-mass, pre-main-sequence stars. The members of this class experience powerful accretion outbursts and remain in an enhanced accretion state for decades or centuries. V1515 Cyg, a classical FUor, started brightening in the 1940s and reached its peak brightness in the late 1970s. Following a sudden decrease in brightness, it stayed in a minimum state for a few months, then started brightening for several years. We present the results of our ground-based photometric monitoring complemented with optical/near-infrared spectroscopic monitoring. Our light curves show a long-term fading with strong variability on weekly and monthly timescales. The optical spectra show P Cygni profiles and broad blueshifted absorption lines, common properties of FUors. However, V1515 Cyg lacks the P Cygni profile in the Ca II 8498 Å line, a part of the Ca infrared triplet, formed by an outflowing wind, suggesting that the absorbing gas in the wind is optically thin. The newly obtained near-infrared spectrum shows the strengthening of the CO bandhead and the FeH molecular band, indicating that the disk has become cooler since the last spectroscopic observation in 2015. The current luminosity of the accretion disk dropped from the peak value of 138 L ⊙ to about 45 L ⊙, suggesting that the long-term fading is also partly caused by the dropping of the accretion rate
    corecore