1,560 research outputs found
Benchmarking CPUs and GPUs on embedded platforms for software receiver usage
Smartphones containing multi-core central processing units (CPUs) and powerful many-core graphics processing units (GPUs) bring supercomputing technology into your pocket (or into our embedded devices). This can be exploited to produce power-efficient, customized receivers with flexible correlation schemes and more advanced positioning techniques. For example, promising techniques such as the Direct Position Estimation paradigm or usage of tracking solutions based on particle filtering, seem to be very appealing in challenging environments but are likewise computationally quite demanding. This article sheds some light onto recent embedded processor developments, benchmarks Fast Fourier Transform (FFT) and correlation algorithms on representative embedded platforms and relates the results to the use in GNSS software radios. The use of embedded CPUs for signal tracking seems to be straight forward, but more research is required to fully achieve the nominal peak performance of an embedded GPU for FFT computation. Also the electrical power consumption is measured in certain load levels.Peer ReviewedPostprint (published version
Neural oscillations and event-related potentials reveal how semantic congruence drives long-term memory in both young and older humans
Long-term memory can improve when incoming information is congruent with known semantic information. This so-called congruence effect has widely been shown in younger adults, but age-related changes and neural mechanisms remain unclear. Here, congruence improved recognition memory in younger and older adults (i.e. congruence effect), with only weak evidence for age-related decline in one behavioral study. In an EEG study, however, no significant behavioral differences in the congruence effect could be observed between age-groups. In line with this observation, electroencephalography data show that, in both groups, congruence led to widespread differences in Event-Related Potentials (ERPs), starting at around 400ms after stimulus onset, and theta, alpha and beta oscillations (4-20Hz). Importantly, these congruence-related ERPs were associated to increases in memory performance for congruent items, in both age groups. Finally, the described ERPs and neural oscillations in the theta-alpha range (5-13Hz) were less pronounced in the elderly despite a preserved congruence effect. Together, semantic congruence increases long-term memory across the lifespan, and, at the neural level, this could be linked to neural oscillations in the theta, alpha and beta range, as well as ERPs that were previously associated with semantic processing
Semantic Congruence Drives Long-Term Memory and Similarly Affects Neural Retrieval Dynamics in Young and Older Adults
Learning novel information can be promoted if it is congruent with already stored knowledge. This so-called semantic congruence effect has been broadly studied in healthy young adults with a focus on neural encoding mechanisms. However, the impacts on retrieval, and possible impairments during healthy aging, which is typically associated with changes in declarative long-term memory, remain unclear. To investigate these issues, we used a previously established paradigm in healthy young and older humans with a focus on the neural activity at a final retrieval stage as measured with electroencephalography (EEG). In both age groups, semantic congruence at encoding enhanced subsequent long-term recognition memory of words. Compatible with this observation, semantic congruence led to differences in event-related potentials (ERPs) at retrieval, and this effect was not modulated by age. Specifically, congruence modulated old/new ERPs at a fronto-central (Fz) and left parietal (P3) electrode in a late (400-600 ms) time window, which has previously been associated with recognition memory processes. Importantly, ERPs to old items also correlated with the positive effect of semantic congruence on long-term memory independent of age. Together, our findings suggest that semantic congruence drives subsequent recognition memory across the lifespan through changes in neural retrieval processes
Gravitational radiation in d>4 from effective field theory
Some years ago, a new powerful technique, known as the Classical Effective
Field Theory, was proposed to describe classical phenomena in gravitational
systems. Here we show how this approach can be useful to investigate
theoretically important issues, such as gravitational radiation in any
spacetime dimension. In particular, we derive for the first time the
Einstein-Infeld-Hoffman Lagrangian and we compute Einstein's quadrupole formula
for any number of flat spacetime dimensions.Comment: 32 pages, 10 figures. v2: Factor in eq. (3.11) fixed. References
adde
Xenon protects against blast-induced traumatic brain injury in an in vitro model
The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury
Exceptionally Slow Rise in Differential Reflectivity Spectra of Excitons in GaN: Effect of Excitation-induced Dephasing
Femtosecond pump-probe (PP) differential reflectivity spectroscopy (DRS) and
four-wave mixing (FWM) experiments were performed simultaneously to study the
initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats
between the A-B excitons were found \textit{only for positive time delay} in
both PP and FWM experiments. The rise time at negative time delay for the
differential reflection spectra was much slower than the FWM signal or PP
differential transmission spectroscopy (DTS) at the exciton resonance. A
numerical solution of a six band semiconductor Bloch equation model including
nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS
results from excitation induced dephasing (EID), that is, the strong density
dependence of the dephasing time which changes with the laser excitation
energy.Comment: 8 figure
On zero sets in the Dirichlet space
We study the zeros sets of functions in the Dirichlet space. Using Carleson
formula for Dirichlet integral, we obtain some new families of zero sets. We
also show that any closed subset of E \subset \TT with logarithmic capacity
zero is the accumulation points of the zeros of a function in the Dirichlet
space. The zeros satisfy a growth restriction which depends on .Comment: Journal of Geometric Analysis (2011
Design of a Planar Sensor Based on Split-Ring Resonators for Non-Invasive Permittivity Measurement
The permittivity of a material is an important parameter to characterize the degree of polarization of a material and identify components and impurities. This paper presents a non-invasive measurement technique to characterize materials in terms of their permittivity based on a modified metamaterial unit-cell sensor. The sensor consists of a complementary split-ring resonator (C-SRR), but its fringe electric field is contained with a conductive shield to intensify the normal component of the electric field. It is shown that by tightly electromagnetically coupling opposite sides of the unit-cell sensor to the input/output microstrip feedlines, two distinct resonant modes are excited. Perturbation of the fundamental mode is exploited here for determining the permittivity of materials. The sensitivity of the modified metamaterial unit-cell sensor is enhanced four-fold by using it to construct a tri-composite split-ring resonator (TC-SRR). The measured results confirm that the proposed technique provides an accurate and inexpensive solution to determine the permittivity of materials
Angle-resonant stimulated polariton amplifier
We experimentally demonstrate resonant coupling between photons and excitons in microcavities which can efficiently generate enormous single-pass optical gains approaching 100. This new parametric phenomenon appears as a sharp angular resonance of the incoming pump beam, at which the moving excitonic polaritons undergo very large changes in momentum. Ultrafast stimulated scattering is clearly identified from the exponential dependence on pump intensity. This device utilizes boson amplification
induced by stimulated energy relaxation
- …