3,058 research outputs found

    A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy

    Full text link
    We propose a new, more realistic, description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. We investigate the stable stellar orbits in galactic disks, using the new perturbed potential. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We find a range of values for the perturbation amplitude from 400 to 800 km^2 s^{-2} kpc^{-1} which implies a maximum ratio of the tangential force to the axisymmetric force between 3% and 6%, approximately. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in galaxies can be understood as a natural effect of the 4:1 resonance. Beyond the 4:1 resonance we find closed orbits which have similarities with the arms observed in our Galaxy. In regions near the center, in the presence of a massive bulge, elongated stellar orbits appear naturally, without imposing any bar-shaped potential, but only extending the spiral perturbation a little inward of the ILR. This suggests that a bar is formed with a half-size around 3 kpc by a mechanism similar to that of the spiral arms. The potential energy perturbation that we adopted represents an important step in the direction of self-consistency, compared to previous sine function descriptions of the potential. Our model produces a realistic description of the spiral structure, able to explain several details that were not yet understood.Comment: 12 pag., 11 fig. Accepted for publication in A&A, 2012 December 1

    Equivalence between the Lovelock-Cartan action and a constrained gauge theory

    Full text link
    We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1,3)SO(1,3) group with an additional BRST trivial part. The model is originally composed by a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant while the gauge field is identified with the spin-connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed.Comment: 17 pages. No figures. Final version accepted for publication at the EPJ

    Comparison of the solophenyl-red polarization method and the immunohistochemical analysis for collagen type III

    Get PDF
    In the present study, we have compared the staining pattern of the Solophenyl-Red 3 BL-method for the visualization of collagen type III with the immunohistochemical staining in serial sections from 7 skin wounds (wound age 3 days up to 4 weeks) to elucidate the specifity of the histochemical staining method. Large amounts of collagen type III were clearly detectable in the investigated wounds using the immunohistochemical technique. In the sections stained with Solophenyl-Red, however, only 3 out of 7 skin lesions showed a significant positive red staining at the wound margin or in the granulation tissue, while the adjacent normal connective tissue revealed a typical intensive staining. Using polarization microscopy no characteristic bright green fibrils, as reported for collagen type 111, could be seen in the wound areas without positive Solophenyl-Red staining. Since the localization of collagen type III detected by immunohistochemistry and the presumed distribution of this collagen type by the Solophenyl-Red method was not identical, the histochemical polarization method has to be regarded as non-specific for visualization of this collagen type

    Bimodal chemical evolution of the Galactic disk and the Barium abundance of Cepheids

    Full text link
    In order to understand the Barium abundance distribution in the Galactic disk based on Cepheids, one must first be aware of important effects of the corotation resonance, situated a little beyond the solar orbit. The thin disk of the Galaxy is divided in two regions that are separated by a barrier situated at that radius. Since the gas cannot get across that barrier, the chemical evolution is independent on the two sides of it. The barrier is caused by the opposite directions of flows of gas, on the two sides, in addition to a Cassini-like ring void of HI (caused itself by the flows). A step in the metallicity gradient developed at corotation, due to the difference in the average star formation rate on the two sides, and to this lack of communication between them. In connection with this, a proof that the spiral arms of our Galaxy are long-lived (a few billion years) is the existence of this step. When one studies the abundance gradients by means of stars which span a range of ages, like the Cepheids, one has to take into account that stars, contrary to the gas, have the possibility of crossing the corotation barrier. A few stars born on the high metallicity side are seen on the low metallicity one, and vice-versa. In the present work we re-discuss the data on Barium abundance in Cepheids as a function of Galactic radius, taking into account the scenario described above. The [Ba/H] ratio, plotted as a function of Galactic radius, apparently presents a distribution with two branches in the external region (beyond corotation). One can re-interpret the data and attribute the upper branch to the stars that were born on the high metallicity side. The lower branch, analyzed separately, indicates that the stars born beyond corotation have a rising Barium metallicity as a function of Galactic radius.Comment: 6 pages, 7 figures, Proceedings of IAU Symposium 29

    Convergent adaptations: bitter manioc cultivation systems in fertile anthropogenic dark earths and floodplain soils in central Amazonia

    Get PDF
    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for research and debate concerning the origins, evolution, history and contemporary cultivation of bitter manioc in Amazonia and beyond

    Correlações fenotípicas entre vigor e resistência ao mal-das-folhas no híbrido ian 6158 x fx 985 de seringueira.

    Get PDF
    bitstream/CNPF-2009-09/30409/1/com_tec67.pd
    • …
    corecore