1,482 research outputs found

    Carbon and oxygen isotope composition of carbonates from an L6 chondrite: Evidence for terrestrial weathering from the Holbrook meteorite

    Get PDF
    Terrestrial weathering in meteorites is an important process which alters pristine elemental and isotopic abundances. The Holbrook L6 chondrite fell in 1912. Material was recovered at the time of the fall, in 1931, and 1968. The weathering processes operating on the freshly fallen meteorite in a semi-arid region of northeastern Arizona have been studied after a ground residence of 19 and 56 years. It has been shown that a large portion of the carbonate material in 7 Antarctic ordinary chondrites either underwent extensive isotopic exchange with atmospheric CO2, or formed recently in the Antarctic environment. In fact it has been demonstrated that hydrated Mg-carbonates, nesquehonite and hydromagnesite, formed in less than 40 years on LEW 85320. In order to help further constrain the effects of terrestrial weathering in meteorites, the carbon and oxygen isotopes extracted from carbonates of three different samples of Holbrook L6: a fresh sample at the time of the fall in 1912, a specimen collected in 1931, and a third specimen collected at the same site in 1968

    The exposure history of the Apollo 16 site: An assessment based on methane and hydrolysable carbon

    Get PDF
    Nineteen soils from eight stations at the Apollo 16 landing site have been analyzed for methane and hydrolysable carbon. These results, in conjunction with published data from photogeology, bulk chemistry, rare gases, primordial and cosmogenic radionuclides, and agglutinate abundances have been interpreted in terms of differing contributions from three components-North and South Ray Crater ejecta and Cayley Plains material

    [I] Terrestrial Ages of Antarctic and Hot Desert Meteorites Using Carbon-14 and Other Cosmogenic Radionuclides

    Get PDF
    The Tenth Symposium on Polar Science/Special session: [OA] Antarctic meteorites, Thur. 5 Dec. / 3F Multipurpose conference room, National Institute of Polar Researc

    Radionuclide measurements by accelerator mass spectrometry at Arizona

    Get PDF
    Over the past years, Tandem Accelerator Mass Spectrometry (TAMS) has become established as an important method for radionuclide analysis. In the Arizona system the accelerator is operated at a thermal voltage of 1.8MV for C-14 analysis, and 1.6 to 2MV for Be-10. Samples are inserted into a cesium sputter ion source in solid form. Negative ions sputtered from the target are accelerated to about 25kV, and the injection magnet selects ions of a particular mass. Ions of the 3+ charge state, having an energy of about 9MeV are selected by an electrostatic deflector, surviving ions pass through two magnets, where only ions of the desired mass-energy product are selected. The final detector is a combination ionization chamber to measure energy loss (and hence, Z), and a silicon surface-barrier detector which measures residual energy. After counting the trace iosotope for a fixed time, the injected ions are switched to the major isotope used for normalization. These ions are deflected into a Faraday cup after the first high-energy magnet. Repeated measurements of the isotope ratio of both sample and standards results in a measurement of the concentration of the radionuclide. Recent improvements in sample preparation for C-14 make preparation of high-beam current graphite targets directly from CO2 feasible. Except for some measurements of standards and backgrounds for Be-10 measurements to date have been on C-14. Although most results have been in archaeology and quaternary geology, studies have been expanded to include cosmogenic C-14 in meteorites. The data obtained so far tend to confirm the antiquity of Antarctic meteorites from the Allan Hills site. Data on three samples of Yamato meteorites gave terrestrial ages of between about 3 and 22 thousand years

    Movement-based subgrouping in low back pain: synergy and divergence in approaches

    Get PDF
    Background Classification systems for low back pain (LBP) aim to guide treatment decisions. In physiotherapy, there are five classification schemes for LBP which consider responses to clinical movement examination. Little is known of the relationship between the schemes

    Dorsal laminectomy for treatment of cervical vertebral stenotic myelopathy in an alpaca

    Get PDF

    “CLOCK IN THE ROCK” – IN-SITU C-14 ROCK SURFACE EXPOSURE DATING APPLICATIONS

    Get PDF
    Cosmic rays interact not only with the atmosphere, but also with material at the surface of the Earth. Thus C-14 can be produced directly in a rock surface by the effect of cosmic-ray neutron effects. The goal of the research is to develop the capability of the Hertelendi Laboratory for Environmental Sciences (HEKAL) in the field of cosmogenic radionuclides produced in situ by the action of cosmic radiation. Our aim is to construct a small line for the extraction of cosmogenic C-14 from quartz, making a system compatible with the online capabilities of the new MICADAS accelerator mass spectrometer (AMS) at HEKAL in Debrecen. We have tested the chemical blank level, cross contamination effect and reproducibility of MICADAS gas ion source application in in-situ rock surface exposure dating

    Atmospheric Fragmentation of the Gold Basin Meteoroid as Constrained from Cosmogenic Nuclides

    Get PDF
    Since the discovery of the Gold Basin L4 chondrite shower almost ten years ago in the northwestern corner of Arizona, many thousands of L-chondrite specimens have been recovered from an area of approx.22 km long and approx.10 km wide. Concentrations of cosmogenic 14C and 10Be in a number of these samples indicated a terrestrial age of approx.15,000 years and a large pre-atmospheric size [1]. Additional measurements of cosmogenic Be-10, Al-26, Cl-36, and Ca-41 in the metal and stone fractions of fifteen Gold Basin samples constrained the pre-atmospheric radius to 3-5 m [2]. This implies that Gold Basin is by far the largest stone meteorite in the present meteorite collection, providing us with an opportunity to study the fragmentation process of a large chondritic object during atmospheric entry. Knowledge about the fragmentation process provides information about the mechanical strength of large meteoroids, which is important for the evaluation of future hazards of small asteroid impacts on Earth and possible defensive scenarios to avoid those impacts

    GRADE equity guidelines 3: considering health equity in GRADE guideline development: rating the certainty of synthesized evidence

    Get PDF
    Objectives: The aim of this paper is to describe a conceptual framework for how to consider health equity in the Grading Recommendations Assessment and Development Evidence (GRADE) guideline development process. Study Design and Setting: Consensus-based guidance developed by the GRADE working group members and other methodologists. Results: We developed consensus-based guidance to help address health equity when rating the certainty of synthesized evidence (i.e., quality of evidence). When health inequity is determined to be a concern by stakeholders, we propose five methods for explicitly assessing health equity: (1) include health equity as an outcome; (2) consider patient-important outcomes relevant to health equity; (3) assess differences in the relative effect size of the treatment; (4) assess differences in baseline risk and the differing impacts on absolute effects; and (5) assess indirectness of evidence to disadvantaged populations and/or settings. Conclusion: The most important priority for research on health inequity and guidelines is to identify and document examples where health equity has been considered explicitly in guidelines. Although there is a weak scientific evidence base for assessing health equity, this should not discourage the explicit consideration of how guidelines and recommendations affect the most vulnerable members of society
    corecore