926 research outputs found
Facilitated diffusion of DNA-binding proteins
The diffusion-controlled limit of reaction times for site-specific
DNA-binding proteins is derived from first principles. We follow the generally
accepted concept that a protein propagates via two competitive modes, a
three-dimensional diffusion in space and a one-dimensional sliding along the
DNA. However, our theoretical treatment of the problem is new. The accuracy of
our analytical model is verified by numerical simulations. The results confirm
that the unspecific binding of protein to DNA, combined with sliding, is
capable to reduce the reaction times significantly.Comment: 4 pages, 2 figures Nov 22 2005 - accepted for PR
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. it controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells
The role of active movement in fungal ecology and community assembly
Movement ecology aims to provide common terminology and an integrative framework of movement research across all groups of organisms. Yet such work has focused on unitary organisms so far, and thus the important group of filamentous fungi has not been considered in this context. With the exception of spore dispersal, movement in filamentous fungi has not been integrated into the movement ecology field. At the same time, the field of fungal ecology has been advancing research on topics like informed growth, mycelial translocations, or fungal highways using its own terminology and frameworks, overlooking the theoretical developments within movement ecology. We provide a conceptual and terminological framework for interdisciplinary collaboration between these two disciplines, and show how both can benefit from closer links: We show how placing the knowledge from fungal biology and ecology into the framework of movement ecology can inspire both theoretical and empirical developments, eventually leading towards a better understanding of fungal ecology and community assembly. Conversely, by a greater focus on movement specificities of filamentous fungi, movement ecology stands to benefit from the challenge to evolve its concepts and terminology towards even greater universality. We show how our concept can be applied for other modular organisms (such as clonal plants and slime molds), and how this can lead towards comparative studies with the relationship between organismal movement and ecosystems in the focus
Modeling transcription factor binding events to DNA using a random walker/jumper representation on a 1D/2D lattice with different affinity sites
Surviving in a diverse environment requires corresponding organism responses.
At the cellular level, such adjustment relies on the transcription factors
(TFs) which must rapidly find their target sequences amidst a vast amount of
non-relevant sequences on DNA molecules. Whether these transcription factors
locate their target sites through a 1D or 3D pathway is still a matter of
speculation. It has been suggested that the optimum search time is when the
protein equally shares its search time between 1D and 3D diffusions. In this
paper, we study the above problem using a Monte Carlo simulation by considering
a very simple physical model. A 1D strip, representing a DNA, with a number of
low affinity sites, corresponding to non-target sites, and high affinity sites,
corresponding to target sites, is considered and later extended to a 2D strip.
We study the 1D and 3D exploration pathways, and combinations of the two modes
by considering three different types of molecules: a walker that randomly walks
along the strip with no dissociation; a jumper that represents dissociation and
then re-association of a TF with the strip at later time at a distant site; and
a hopper that is similar to the jumper but it dissociates and then
re-associates at a faster rate than the jumper. We analyze the final
probability distribution of molecules for each case and find that TFs can
locate their targets fast enough even if they spend 15% of their search time
diffusing freely in the solution. This indeed agrees with recent experimental
results obtained by Elf et al. 2007 and is in contrast with theoretical
expectation.Comment: 24 pages, 9 figure
Classes of fast and specific search mechanisms for proteins on DNA
Problems of search and recognition appear over different scales in biological
systems. In this review we focus on the challenges posed by interactions
between proteins, in particular transcription factors, and DNA and possible
mechanisms which allow for a fast and selective target location. Initially we
argue that DNA-binding proteins can be classified, broadly, into three distinct
classes which we illustrate using experimental data. Each class calls for a
different search process and we discuss the possible application of different
search mechanisms proposed over the years to each class. The main thrust of
this review is a new mechanism which is based on barrier discrimination. We
introduce the model and analyze in detail its consequences. It is shown that
this mechanism applies to all classes of transcription factors and can lead to
a fast and specific search. Moreover, it is shown that the mechanism has
interesting transient features which allow for stability at the target despite
rapid binding and unbinding of the transcription factor from the target.Comment: 65 pages, 23 figure
Temporal Stream Logic: Synthesis beyond the Bools
Reactive systems that operate in environments with complex data, such as
mobile apps or embedded controllers with many sensors, are difficult to
synthesize. Synthesis tools usually fail for such systems because the state
space resulting from the discretization of the data is too large. We introduce
TSL, a new temporal logic that separates control and data. We provide a
CEGAR-based synthesis approach for the construction of implementations that are
guaranteed to satisfy a TSL specification for all possible instantiations of
the data processing functions. TSL provides an attractive trade-off for
synthesis. On the one hand, synthesis from TSL, unlike synthesis from standard
temporal logics, is undecidable in general. On the other hand, however,
synthesis from TSL is scalable, because it is independent of the complexity of
the handled data. Among other benchmarks, we have successfully synthesized a
music player Android app and a controller for an autonomous vehicle in the Open
Race Car Simulator (TORCS.
Pattern representation and recognition with accelerated analog neuromorphic systems
Despite being originally inspired by the central nervous system, artificial
neural networks have diverged from their biological archetypes as they have
been remodeled to fit particular tasks. In this paper, we review several
possibilites to reverse map these architectures to biologically more realistic
spiking networks with the aim of emulating them on fast, low-power neuromorphic
hardware. Since many of these devices employ analog components, which cannot be
perfectly controlled, finding ways to compensate for the resulting effects
represents a key challenge. Here, we discuss three different strategies to
address this problem: the addition of auxiliary network components for
stabilizing activity, the utilization of inherently robust architectures and a
training method for hardware-emulated networks that functions without perfect
knowledge of the system's dynamics and parameters. For all three scenarios, we
corroborate our theoretical considerations with experimental results on
accelerated analog neuromorphic platforms.Comment: accepted at ISCAS 201
The International Working Group on Neurotransmitter related Disorders (iNTD): A worldwide research project focused on primary and secondary neurotransmitter disorders
INTRODUCTION: Neurotransmitters are chemical messengers that enable communication between the neurons in the synaptic cleft. Inborn errors of neurotransmitter biosynthesis, breakdown and transport are a group of very rare neurometabolic diseases resulting in neurological impairment at any age from newborn to adulthood.
METHODS AND RESULTS: The International Working Group on Neurotransmitter related Disorders (iNTD) is the first international network focusing on the study of primary and secondary neurotransmitter disorders. It was founded with the aim to foster exchange and improve knowledge in the field of these rare diseases. The newly established iNTD patient registry for neurotransmitter related diseases collects longitudinal data on the natural disease course, approach to diagnosis, therapeutic strategies, and quality of life of affected patients. The registry forms the evidence base for the development of consensus guidelines for patients with neurotransmitter related disorders.
CONCLUSION: The iNTD network and registry will improve knowledge and strengthen research capacities in the field of inborn neurotransmitter disorders. The evidence-based guidelines will facilitate standardized diagnostic procedures and treatment approaches
Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair
Carbon Cycle Responses to Changes in Weathering and the Long-Term Fate of Stable Carbon Isotopes
- …
