88 research outputs found

    Ethylene and other stimuli affect expression of the UDP glucose-flavonoid 3-O-glucosyltransferase in a non-climacteric fruit

    Get PDF
    The UDP glucose-flavonoid 3-O-glucoslyltransferase (UFGT) is a key enzyme for biosynthesis and stability of anthocyanin pigments of red grapes. Understanding factors affecting expression of this enzyme is thus important for the control of grape colour. A 1640 bp promoter region of the grapevine ufgt gene was cloned and sequenced. Sequence analysis revealed seven putative ethylene-responsive cis-elements and others related to three major signals known to induce anthocyanin accumulation in plant tissues: light, sugar, and abscisic acid. In order to evaluate the ability of ethylene and other signals to drive expression from the ufgt promoter, we ran transient expression experiments using an anthocyanin-rich grape cell culture, with very low green auto-fluorescence. After biolistic bombardment, the cells were treated with various combinations of the four signals on gfp expression (green fluorescent protein). The comparison of fluorescent light intensity in cells subjected to the various treatments showed that ethylene better stimulates expression of the ufgt promoter in the dark than under light. In addition, results showed that there may be a positive interaction between ethylene and abscisic acid. This system, a promoter of interest driving the gfp expression in cells with low auto-fluorescence, may be a good tool for studies about synergistic or antagonist roles of transcription factors. Moreover, treatment of grape berries with a specific inhibitor of ethylene receptors (1-methylcyclopropene) inhibited ufgt mRNA accumulation. This confirms that the ethylene signal is likely a regulator of grape UFGT expression in a non-climacteric fruit.

    Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis

    Get PDF
    Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as “guards”. The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity

    The role of the complement system in traumatic brain injury: a review

    Get PDF
    Traumatic brain injury (TBI) is an important cause of disability and mortality in the western world. While the initial injury sustained results in damage, it is the subsequent secondary cascade that is thought to be the significant determinant of subsequent outcomes. The changes associated with the secondary injury do not become irreversible until some time after the start of the cascade. This may present a window of opportunity for therapeutic interventions aiming to improve outcomes subsequent to TBI. A prominent contributor to the secondary injury is a multifaceted inflammatory reaction. The complement system plays a notable role in this inflammatory reaction; however, it has often been overlooked in the context of TBI secondary injury. The complement system has homeostatic functions in the uninjured central nervous system (CNS), playing a part in neurodevelopment as well as having protective functions in the fully developed CNS, including protection from infection and inflammation. In the context of CNS injury, it can have a number of deleterious effects, evidence for which primarily comes not only from animal models but also, to a lesser extent, from human post-mortem studies. In stark contrast to this, complement may also promote neurogenesis and plasticity subsequent to CNS injury. This review aims to explore the role of the complement system in TBI secondary injury, by examining evidence from both clinical and animal studies. We examine whether specific complement activation pathways play more prominent roles in TBI than others. We also explore the potential role of complement in post-TBI neuroprotection and CNS repair/regeneration. Finally, we highlight the therapeutic potential of targeting the complement system in the context of TBI and point out certain areas on which future research is needed

    Comparative structure and ontogeny of the foliar domatia in three neotropical myrmecophytes

    No full text
    International audienc

    A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis.

    No full text
    Endo-1,4-beta-D-glucanases (EGases) form a large family of hydrolytic enzymes in prokaryotes and eukaryotes. In higher plants, potential substrates in vivo are xyloglucan and non-crystalline cellulose in the cell wall. Gene expression patterns suggest a role for EGases in various developmental processes such as leaf abscission, fruit ripening and cell expansion. Using Arabidopsis thaliana genetics, we demonstrate the requirement of a specialized member of the EGase family for the correct assembly of the walls of elongating cells. KORRIGAN (KOR) is identified by an extreme dwarf mutant with pronounced architectural alterations in the primary cell wall. The KOR gene was isolated and encodes a membrane-anchored member of the EGase family, which is highly conserved between mono- and dicotyledonous plants. KOR is located primarily in the plasma membrane and presumably acts at the plasma membrane-cell wall interface. KOR mRNA was found in all organs examined, and in the developing dark-grown hypocotyl, mRNA levels were correlated with rapid cell elongation. Among plant growth factors involved in the control of hypocotyl elongation (auxin, gibberellins and ethylene) none significantly influenced KOR-mRNA levels. However, reduced KOR-mRNA levels were observed in det2, a mutant deficient for brassinosteroids. Although the in vivo substrate remains to be determined, the mutant phenotype is consistent with a central role for KOR in the assembly of the cellulose-hemicellulose network in the expanding cell wall
    • 

    corecore