423 research outputs found

    Investigation of time-gap formulae on the CRE system using mouse tissue as a biological model.

    Get PDF
    The cumulative radiation effect (CRE) is one of several empirical scalar descriptions of biological effect which enable corrections to be made for gaps in radiotherapy treatment. Predictions of this theory were tested using mouse crypt regeneration and mouse skin as biological models. These experimental results are discussed in terms of the dependence of tissue regeneration potential during a gap on the biological effect achieved before the gap, and on gap length. A hypothesis is proposed to reconcile the apparent conflict between the two experiments. While the simple exponential gap formulation of the CRE is seen to be inadequate, insufficient data are available at present to modify it

    Numerical modeling of thermal bar and stratification pattern in Lake Ontario using the EFDC model

    Get PDF
    Thermal bar is an important phenomenon in large, temperate lakes like Lake Ontario. Spring thermal bar formation reduces horizontal mixing, which in turn, inhibits the exchange of nutrients. Evolution of the spring thermal bar through Lake Ontario is simulated using the 3D hydrodynamic model Environmental Fluid Dynamics Code (EFDC). The model is forced with the hourly meteorological data from weather stations around the lake, flow data for Niagara and St. Lawrence rivers, and lake bathymetry. The simulation is performed from April to July, 2011; on a 2-km grid. The numerical model has been calibrated by specifying: appropriate initial temperature and solar radiation attenuation coefficients. The existing evaporation algorithm in EFDC is updated to modified mass transfer approach to ensure correct simulation of evaporation rate and latent heatflux. Reasonable values for mixing coefficients are specified based on sensitivity analyses. The model simulates overall surface temperature profiles well (RMSEs between 1-2°C). The vertical temperature profiles during the lake mixed phase are captured well (RMSEs < 0.5°C), indicating that the model sufficiently replicates the thermal bar evolution process. An update of vertical mixing coefficients is under investigation to improve the summer thermal stratification pattern. Keywords: Hydrodynamics, Thermal BAR, Lake Ontario, GIS

    Investigating summer thermal stratification in Lake Ontario

    Get PDF
    Summer thermal stratification in Lake Ontario is simulated using the 3D hydrodynamic model Environmental Fluid Dynamics Code (EFDC). Summer temperature differences establish strong vertical density gradients (thermocline) between the epilimnion and hypolimnion. Capturing the stratification and thermocline formation has been a challenge in modeling Great Lakes. Deviating from EFDC's original Mellor-Yamada (1982) vertical mixing scheme, we have implemented an unidimensional vertical model that uses different eddy diffusivity formulations above and below the thermocline (Vincon-Leite, 1991; Vincon-Leite et al., 2014). The model is forced with the hourly meteorological data from weather stations around the lake, flow data for Niagara and St. Lawrence rivers; and lake bathymetry is interpolated on a 2-km grid. The model has 20 vertical layers following sigma vertical coordinates. Sensitivity of the model to vertical layers' spacing is thoroughly investigated. The model has been calibrated for appropriate solar radiation coefficients and horizontal mixing coefficients. Overall the new implemented diffusivity algorithm shows some successes in capturing the thermal stratification with RMSE values between 2-3°C. Calibration of vertical mixing coefficients is under investigation to capture the improved thermal stratification

    Comparison of Left Ventricular Strains and Torsion Derived from Feature Tracking and DENSE CMR

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) feature tracking is increasingly used to quantify cardiac mechanics from cine CMR imaging, although validation against reference standard techniques has been limited. Furthermore, studies have suggested that commonly-derived metrics, such as peak global strain (reported in 63% of feature tracking studies), can be quantified using contours from just two frames – end-diastole (ED) and end-systole (ES) – without requiring tracking software. We hypothesized that mechanics derived from feature tracking would not agree with those derived from a reference standard (displacement-encoding with stimulated echoes (DENSE) imaging), and that peak strain from feature tracking would agree with that derived using simple processing of only ED and ES contours. Methods: We retrospectively identified 88 participants with 186 pairs of DENSE and balanced steady state free precession (bSSFP) image slices acquired at the same locations across two institutions. Left ventricular (LV) strains, torsion, and dyssynchrony were quantified from both feature tracking (TomTec Imaging Systems, Circle Cardiovascular Imaging) and DENSE. Contour-based strains from bSSFP images were derived from ED and ES contours. Agreement was assessed with Bland-Altman analyses and coefficients of variation (CoV). All biases are reported in absolute percentage. Results: Comparison results were similar for both vendor packages (TomTec and Circle), and thus only TomTec Imaging System data are reported in the abstract for simplicity. Compared to DENSE, mid-ventricular circumferential strain (Ecc) from feature tracking had acceptable agreement (bias: − 0.4%, p = 0.36, CoV: 11%). However, feature tracking significantly overestimated the magnitude of Ecc at the base (bias: − 4.0% absolute, p \u3c 0.001, CoV: 18%) and apex (bias: − 2.4% absolute, p = 0.01, CoV: 15%), underestimated torsion (bias: − 1.4 deg/cm, p \u3c 0.001, CoV: 41%), and overestimated dyssynchrony (bias: 26 ms, p \u3c 0.001, CoV: 76%). Longitudinal strain (Ell) had borderline-acceptable agreement (bias: − 0.2%, p = 0.77, CoV: 19%). Contour-based strains had excellent agreement with feature tracking (biases: − 1.3–0.2%, CoVs: 3–7%). Conclusion: Compared to DENSE as a reference standard, feature tracking was inaccurate for quantification of apical and basal LV circumferential strains, longitudinal strain, torsion, and dyssynchrony. Feature tracking was only accurate for quantification of mid LV circumferential strain. Moreover, feature tracking is unnecessary for quantification of whole-slice strains (e.g. base, apex), since simplified processing of only ED and ES contours yields very similar results to those derived from feature tracking. Current feature tracking technology therefore has limited utility for quantification of cardiac mechanics

    Applicability of a short/rapid 13C-urea breath test for Helicobacter pylori: retrospective multicenter chart review study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon labeled urea breath tests usually entail a two point sampling with a 20 to 30-minute gap. Our aim was to evaluate the duration of time needed for diagnosing <it>Helicobacter pylori </it>by the BreathID<sup>® </sup>System.</p> <p>Methods</p> <p>This is a retrospective multicenter chart review study. Test location, date, delta over baseline, and duration of the entire test were recorded. Consecutively <sup>13</sup>C urea breath tests results were extracted from the files over a nine year period.</p> <p>Results</p> <p>Of the 12,791 tests results, 35.1% were positively diagnosed and only 0.1% were inconclusive. A statistically significant difference in prevalence among the countries was found: Germany showing the lowest, 13.3%, and Israel the highest, 44.1%. Significant differences were found in time to diagnosis: a positive diagnosis had the shortest and an inconclusive result had the longest. Overall test duration averaged 15.1 minutes in Germany versus approximately 13 minutes in other countries. Diagnosis was achieved after approximately 9 minutes in Israel, Italy and Switzerland, but after 10 on average in the others. The mean delta over baseline value for a negative diagnosis was 1.03 ± 0.86, (range, 0.9 - 5), versus 20.2 ± 18.9, (range, 5.1 - 159.4) for a positive one.</p> <p>Conclusions</p> <p>The BreathID<sup>® </sup>System used in diagnosing <it>Helicobacter pylori </it>can safely shorten test duration on average of 10-13 minutes without any loss of sensitivity or specificity and with no test lasting more than 21 minutes.</p

    Making the most of data:An information selection and assessment framework to improve water systems operations

    Get PDF
    Advances in Environmental monitoring systems are making a wide range of data available at increasingly higher temporal and spatial resolution. This creates an opportunity to enhance real-time understanding of water systems conditions and to improve prediction of their future evolution, ultimately increasing our ability to make better decisions. Yet, many water systems are still operated using very simple information systems, typically based on simple statistical analysis and the operator’s experience. In this work, we propose a framework to automatically select the most valuable information to inform water systems operations supported by quantitative metrics to operationally and economically assess the value of this information. The Hoa Binh reservoir in Vietnam is used to demonstrate the proposed framework in a multiobjective context, accounting for hydropower production and flood control. First, we quantify the expected value of perfect information, meaning the potential space for improvement under the assumption of exact knowledge of the future system conditions. Second, we automatically select the most valuable information that could be actually used to improve the Hoa Binh operations. Finally, we assess the economic value of sample information on the basis of the resulting policy performance. Results show that our framework successfully select information to enhance the performance of the operating policies with respect to both the competing objectives, attaining a 40% improvement close to the target trade-off selected as potentially good compromise between hydropower production and flood control
    corecore