156 research outputs found

    Hypoxic pre-conditioning increases the infiltration of endothelial cells into scaffolds for dermal regeneration pre-seeded with mesenchymal stem cells.

    Get PDF
    Many therapies using mesenchymal stem cells (MSC) rely on their ability to produce and release paracrine signals with chemotactic and pro-angiogenic activity. These characteristics, however, are mostly studied under standard in vitro culture conditions. In contrast, various novel cell-based therapies imply pre-seeding MSC into bio-artificial scaffolds. Here we describe human bone marrow-derived MSC seeded in Integra matrices, a common type of scaffold for dermal regeneration (SDR). We show and measured the distribution of MSC within the SDR, where cells clearly establish physical interactions with the scaffold, exhibiting constant metabolic activity for at least 15 days. In the SDR, MSC secrete VEGF and SDF-1α and induce transwell migration of CD34(+) hematopoietic/endothelial progenitor cells, which is inhibited in the presence of a CXCR4/SDF-1α antagonist. MSC in SDR respond to hypoxia by altering levels of angiogenic signals such as Angiogenin, Serpin-1, uPA, and IL-8. Finally, we show that MSC-containing SDR that have been pre-incubated in hypoxia show higher infiltration of endothelial cells after implantation into immune deficient mice. Our data show that MSC are fully functional ex vivo when implanted into SDR. In addition, our results strongly support the notion of hypoxic pre-conditioning MSC-containing SDR, in order to promote angiogenesis in the wounds

    Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2-adrenergic receptor-mediated upregulation of IL-6.

    Get PDF
    Stress-induced hormones can alter the inflammatory response to tissue injury; however, the precise mechanism by which epinephrine influences inflammatory response and wound healing is not well defined. Here we demonstrate that epinephrine alters the neutrophil (polymorphonuclear leukocyte (PMN))-dependent inflammatory response to a cutaneous wound. Using noninvasive real-time imaging of genetically tagged PMNs in a murine skin wound, chronic, epinephrine-mediated stress was modeled by sustained delivery of epinephrine. Prolonged systemic exposure of epinephrine resulted in persistent PMN trafficking to the wound site via an IL-6-mediated mechanism, and this in turn impaired wound repair. Further, we demonstrate that β2-adrenergic receptor-dependent activation of proinflammatory macrophages is critical for epinephrine-mediated IL-6 production. This study expands our current understanding of stress hormone-mediated impairment of wound healing and provides an important mechanistic link to explain how epinephrine stress exacerbates inflammation via increased number and lifetime of PMNs

    Detection of Catecholamines Produced in Planktonic P. aeruginosa and S. aureus Treated with Adult Bovine Serum

    Get PDF
    Bacterial biofilms play a critical role in inducing and sustaining chronic wounds that are serious health threats. Bacterial biofilms can also be found on medical prosthetics and implants that sustain infections in patients and cause life threatening situations. Bacteria self-produce these sticky extracellular substances termed a biofilm which help them to adhere to each other forming a community of microorganisms. One of the major issues is that biofilms have antimicrobial characteristics and provide protection from the immune system; biofilms are found in over 80% of human bacterial infections. Formation of a bacterial biofilm occurs when an individual (planktonic) bacterial cell attaches to a surface such as collagen exposed in a wound. The planktonic bacterial cell then converts into a biofilm phenotype which allows it to grow and divide on the surface thereby forming layers of microcolonies. After maturation, which is characterized by the production of an extracellular matrix, cells detach from the biofilm and disperse to re-enter the planktonic mode and repeat the biofilm cycle. Under conditions of stress, namely injury or disease, the human body releases adrenaline-like hormones called catecholamines such as epinephrine (adrenaline) and norepinephrine (noradrenaline). Many studies have indicated a close relationship between the presence of catecholamine hormones in a human host and the growth, formation, and virulence of bacterial biofilms. Furthermore, studies from Dr. Isseroff’s dermatology lab at UC Davis confirm that the presence of these catecholamines at dermal wound sites impair the healing process by generating a cellular response through activation of beta-adrenergic receptors. However, few species of bacterial biofilms have been shown to produce catecholamines independently, and none have been shown to produce epinephrine. We examined two species of bacteria commonly found in chronic wounds, Pseudomonas aeruginosa(Gram negative) and Staphylococcus aureus (Gram positive), to determine whether they can produce catecholamines in eukaryotic cell growth conditions. We examined the supernatants of the media after the bacteria were cultured with 0% and 10% concentrations of Adult Bovine Serum (ABS) and then detected for the presence of catecholamines by High Pressure Liquid Chromatography Electrochemical Detection (HPLC-ED)

    Acute Wounding Alters the Beta2-Adrenergic Signaling and Catecholamine Synthetic Pathways in Keratinocytes

    Get PDF
    Keratinocyte migration is critical for wound re-epithelialization. Previous studies showed that epinephrine activates the beta2-adrenergic receptor (B2AR), impairing keratinocyte migration. Here, we investigated the keratinocyte catecholamine synthetic pathway in response to acute trauma. Cultured keratinocytes were scratch wounded and expression levels of the B2AR and catecholamine synthetic enzymes tyrosine hydroxylase and phenylethanolamine-N-methyltransferase were assayed. The binding affinity of the B2AR was measured. Wounding downregulated B2AR, tyrosine hydroxylase, and phenylethanolamine-N-methyltransferase expression, but pre-exposure to timolol, a beta-adrenergic receptor antagonist, delayed this effect. In wounded keratinocytes, B2AR-binding affinity remained depressed even after its expression returned to prewounding levels. Keratinocyte-derived norepinephrine increased after wounding. Norepinephrine impaired keratinocyte migration; this effect was abrogated with B2AR-selective antagonist ICI-118,551 but not with B1AR-selective antagonist bisoprolol. Finally, for clinical relevance, we determined that norepinephrine was present in freshly wounded skin, thus providing a potential mechanism for impaired healing by local B2AR activation in wound-edge keratinocytes. Taken together, the data show that keratinocytes modulate catecholamine synthetic enzymes and release norepinephrine after scratch wounding. Norepinephrine appears to be a stress-related mediator that impairs keratinocyte migration through activation of the B2AR. Future therapeutic strategies evaluating modulation of norepinephrine-related effects in the wound are warranted

    Low-Energy Helium-Neon Laser Irradiation Increases the Motility of Cultured Human Keratinocytes

    Get PDF
    Helium-neon (HeNe) laser irradiation is known to stimulate wound healing. We investigated whether the biostimulatory effects of HeNe irradiation result from enhancement of keratinocyte proliferation or motility. HeNe effects on keratinocyte motility were evaluated by irradiating a “wounded” culture with 0.8 J/cm2 3 times over a 20-h period. At 20h post-irradiation, videocinemicroscopy and sequential quantitative measurements of the leading edge were taken over a 6-h period. There was a significant difference in migration of the leading edge in irradiated “wounds” compared to non-irradiated “wounded” controls (12.0 μ m/h vs 4.0 μ m/h, p < 0.0001). To determine if the increase in migration observed in irradiated cultures resulted from a proliferative effect of HeNe irradiation, subconfiuent human keratinocyte cultures were irradiated with single or multiple doses of different fluences of HeNe irradiation (0.4 to 7.2J/cm2) and evaluated 72h post-irradiation. Irradiated and non-irradiated keratinocyte cultures grown on a microporous membrane surface were co-cultured with irradiated and non-irradiated fibroblasts to determine if HeNe irradiation induced a paracrine effect on keratinocyte proliferation. No significant increase in keratinocyte proliferation was demonstrated in any of these treatments. The biostimulatory effects of HeNe irradiation may now be extended to include enhancement of keratinocyte motility in vitro; this may contribute to the efficacy of HeNe irradiation in wound healing

    Gene Expression Changes in the Prefrontal Cortex, Anterior Cingulate Cortex and Nucleus Accumbens of Mood Disorders Subjects That Committed Suicide

    Get PDF
    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P≤0.01 and fold change±1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain

    “Mind the Trap”: Mindfulness Practice Reduces Cognitive Rigidity

    Get PDF
    Two experiments examined the relation between mindfulness practice and cognitive rigidity by using a variation of the Einstellung water jar task. Participants were required to use three hypothetical jars to obtain a specific amount of water. Initial problems were solvable by the same complex formula, but in later problems (“critical” or “trap” problems) solving was possible by an additional much simpler formula. A rigidity score was compiled through perseverance of the complex formula. In Experiment 1, experienced mindfulness meditators received significantly lower rigidity scores than non-meditators who had registered for their first meditation retreat. Similar results were obtained in randomized controlled Experiment 2 comparing non-meditators who underwent an eight meeting mindfulness program with a waiting list group. The authors conclude that mindfulness meditation reduces cognitive rigidity via the tendency to be “blinded” by experience. Results are discussed in light of the benefits of mindfulness practice regarding a reduced tendency to overlook novel and adaptive ways of responding due to past experience, both in and out of the clinical setting

    High-Resolution Copy-Number Variation Map Reflects Human Olfactory Receptor Diversity and Evolution

    Get PDF
    Olfactory receptors (ORs), which are involved in odorant recognition, form the largest mammalian protein superfamily. The genomic content of OR genes is considerably reduced in humans, as reflected by the relatively small repertoire size and the high fraction (∼55%) of human pseudogenes. Since several recent low-resolution surveys suggested that OR genomic loci are frequently affected by copy-number variants (CNVs), we hypothesized that CNVs may play an important role in the evolution of the human olfactory repertoire. We used high-resolution oligonucleotide tiling microarrays to detect CNVs across 851 OR gene and pseudogene loci. Examining genomic DNA from 25 individuals with ancestry from three populations, we identified 93 OR gene loci and 151 pseudogene loci affected by CNVs, generating a mosaic of OR dosages across persons. Our data suggest that ∼50% of the CNVs involve more than one OR, with the largest CNV spanning 11 loci. In contrast to earlier reports, we observe that CNVs are more frequent among OR pseudogenes than among intact genes, presumably due to both selective constraints and CNV formation biases. Furthermore, our results show an enrichment of CNVs among ORs with a close human paralog or lacking a one-to-one ortholog in chimpanzee. Interestingly, among the latter we observed an enrichment in CNV losses over gains, a finding potentially related to the known diminution of the human OR repertoire. Quantitative PCR experiments performed for 122 sampled ORs agreed well with the microarray results and uncovered 23 additional CNVs. Importantly, these experiments allowed us to uncover nine common deletion alleles that affect 15 OR genes and five pseudogenes. Comparison to the chimpanzee reference genome revealed that all of the deletion alleles are human derived, therefore indicating a profound effect of human-specific deletions on the individual OR gene content. Furthermore, these deletion alleles may be used in future genetic association studies of olfactory inter-individual differences
    corecore