297 research outputs found
Social welfare in one-sided matchings: Random priority and beyond
We study the problem of approximate social welfare maximization (without
money) in one-sided matching problems when agents have unrestricted cardinal
preferences over a finite set of items. Random priority is a very well-known
truthful-in-expectation mechanism for the problem. We prove that the
approximation ratio of random priority is Theta(n^{-1/2}) while no
truthful-in-expectation mechanism can achieve an approximation ratio better
than O(n^{-1/2}), where n is the number of agents and items. Furthermore, we
prove that the approximation ratio of all ordinal (not necessarily
truthful-in-expectation) mechanisms is upper bounded by O(n^{-1/2}), indicating
that random priority is asymptotically the best truthful-in-expectation
mechanism and the best ordinal mechanism for the problem.Comment: 13 page
Profile-Based Optimal Matchings in the Student-Project Allocation Problem
In the Student/Project Allocation problem (spa) we seek to assign students to individual or group projects offered by lecturers. Students provide a list of projects they find acceptable in order of preference. Each student can be assigned to at most one project and there are constraints on the maximum number of students that can be assigned to each project and lecturer. We seek matchings of students to projects that are optimal with respect to profile, which is a vector whose rth component indicates how many students have their rth-choice project. We present an efficient algorithm for finding agreedy maximum matching in the spa context â this is a maximum matching whose profile is lexicographically maximum. We then show how to adapt this algorithm to find a generous maximum matching â this is a matching whose reverse profile is lexicographically minimum. Our algorithms involve finding optimal flows in networks. We demonstrate how this approach can allow for additional constraints, such as lecturer lower quotas, to be handled flexibly
Social Welfare in One-sided Matching Markets without Money
We study social welfare in one-sided matching markets where the goal is to
efficiently allocate n items to n agents that each have a complete, private
preference list and a unit demand over the items. Our focus is on allocation
mechanisms that do not involve any monetary payments. We consider two natural
measures of social welfare: the ordinal welfare factor which measures the
number of agents that are at least as happy as in some unknown, arbitrary
benchmark allocation, and the linear welfare factor which assumes an agent's
utility linearly decreases down his preference lists, and measures the total
utility to that achieved by an optimal allocation. We analyze two matching
mechanisms which have been extensively studied by economists. The first
mechanism is the random serial dictatorship (RSD) where agents are ordered in
accordance with a randomly chosen permutation, and are successively allocated
their best choice among the unallocated items. The second mechanism is the
probabilistic serial (PS) mechanism of Bogomolnaia and Moulin [8], which
computes a fractional allocation that can be expressed as a convex combination
of integral allocations. The welfare factor of a mechanism is the infimum over
all instances. For RSD, we show that the ordinal welfare factor is
asymptotically 1/2, while the linear welfare factor lies in the interval [.526,
2/3]. For PS, we show that the ordinal welfare factor is also 1/2 while the
linear welfare factor is roughly 2/3. To our knowledge, these results are the
first non-trivial performance guarantees for these natural mechanisms
Bioavailability of heavy metals in drilling muds
Experimental work on uptake of metals from sediments spiked with barite, ilmenite and hematite were performed using the ragworm Nereis diversicolor and the netted dog whelk Hinia (Nassarius) reticulata as test organisms. The present report also provides a brief review of recent litterature on biological effects of metals in drill cuttings, including relevant results from the UKOOA Drill Cuttings Initiative - an international research programme completed in December 2001. The review suggest low to moderate bioaccumulation and toxicity of metals in drill cuttings to marine organisms. The experimental work was performed in a standard test set-up at Solbergstrand Marine Research Station. The test determines enrichment ratios in exposed vs control organisms. Ratios of 67 and 76 for the respective species showed significant uptake of barium from marine sediments spiked with barite. Similarly, significant uptake of titanium were observed in organisms exposed to ilmenite. All other elements (Al, Li, Fe, Zn, Hg, Cd, Pb, Cu, Cr and Ni) showed no significant uptake and ratios within the range 0,6-1,5. This result was partly explained by anomalous low concentrations of Pb in the barite test substance, partly by the presence in several test substances of major fractions of Cr, Ni, Zn and Cu insoluble in standard nitric acid digestion (NS4770). Toxic effects of metals strongly bound in particulate mineral fractions are not expected.Norbar Minerals A
Truthful Facility Assignment with Resource Augmentation: An Exact Analysis of Serial Dictatorship
We study the truthful facility assignment problem, where a set of agents with
private most-preferred points on a metric space are assigned to facilities that
lie on the metric space, under capacity constraints on the facilities. The goal
is to produce such an assignment that minimizes the social cost, i.e., the
total distance between the most-preferred points of the agents and their
corresponding facilities in the assignment, under the constraint of
truthfulness, which ensures that agents do not misreport their most-preferred
points.
We propose a resource augmentation framework, where a truthful mechanism is
evaluated by its worst-case performance on an instance with enhanced facility
capacities against the optimal mechanism on the same instance with the original
capacities. We study a very well-known mechanism, Serial Dictatorship, and
provide an exact analysis of its performance. Although Serial Dictatorship is a
purely combinatorial mechanism, our analysis uses linear programming; a linear
program expresses its greedy nature as well as the structure of the input, and
finds the input instance that enforces the mechanism have its worst-case
performance. Bounding the objective of the linear program using duality
arguments allows us to compute tight bounds on the approximation ratio. Among
other results, we prove that Serial Dictatorship has approximation ratio
when the capacities are multiplied by any integer . Our
results suggest that even a limited augmentation of the resources can have
wondrous effects on the performance of the mechanism and in particular, the
approximation ratio goes to 1 as the augmentation factor becomes large. We
complement our results with bounds on the approximation ratio of Random Serial
Dictatorship, the randomized version of Serial Dictatorship, when there is no
resource augmentation
Pareto Optimal Matchings in Many-to-Many Markets with Ties
We consider Pareto-optimal matchings (POMs) in a many-to-many market of
applicants and courses where applicants have preferences, which may include
ties, over individual courses and lexicographic preferences over sets of
courses. Since this is the most general setting examined so far in the
literature, our work unifies and generalizes several known results.
Specifically, we characterize POMs and introduce the \emph{Generalized Serial
Dictatorship Mechanism with Ties (GSDT)} that effectively handles ties via
properties of network flows. We show that GSDT can generate all POMs using
different priority orderings over the applicants, but it satisfies truthfulness
only for certain such orderings. This shortcoming is not specific to our
mechanism; we show that any mechanism generating all POMs in our setting is
prone to strategic manipulation. This is in contrast to the one-to-one case
(with or without ties), for which truthful mechanisms generating all POMs do
exist
Social Welfare in One-Sided Matching Mechanisms
We study the Price of Anarchy of mechanisms for the well-known problem of
one-sided matching, or house allocation, with respect to the social welfare
objective. We consider both ordinal mechanisms, where agents submit preference
lists over the items, and cardinal mechanisms, where agents may submit
numerical values for the items being allocated. We present a general lower
bound of on the Price of Anarchy, which applies to all
mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and
Random Priority, achieve a matching upper bound. We extend our lower bound to
the Price of Stability of a large class of mechanisms that satisfy a common
proportionality property, and show stronger bounds on the Price of Anarchy of
all deterministic mechanisms
Pareto optimality in house allocation problems
We study Pareto optimal matchings in the context of house allocation problems. We present an O(\sqrt{n}m) algorithm, based on Gales Top Trading Cycles Method, for finding a maximum cardinality Pareto optimal matching, where n is the number of agents and m is the total length of the preference lists. By contrast, we show that the problem of finding a minimum cardinality Pareto optimal matching is NP-hard, though approximable within a factor of 2. We then show that there exist Pareto optimal matchings of all sizes between a minimum and maximum cardinality Pareto optimal matching. Finally, we introduce the concept of a signature, which allows us to give a characterization, checkable in linear time, of instances that admit a unique Pareto optimal matching
Rank Maximal Matchings -- Structure and Algorithms
Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P
denotes a set of posts and ranks on the edges denote preferences of the agents
over posts. A matching M in G is rank-maximal if it matches the maximum number
of applicants to their top-rank post, subject to this, the maximum number of
applicants to their second rank post and so on.
In this paper, we develop a switching graph characterization of rank-maximal
matchings, which is a useful tool that encodes all rank-maximal matchings in an
instance. The characterization leads to simple and efficient algorithms for
several interesting problems. In particular, we give an efficient algorithm to
compute the set of rank-maximal pairs in an instance. We show that the problem
of counting the number of rank-maximal matchings is #P-Complete and also give
an FPRAS for the problem. Finally, we consider the problem of deciding whether
a rank-maximal matching is popular among all the rank-maximal matchings in a
given instance, and give an efficient algorithm for the problem
Biomarkers in monitoring - a review
Ă
rsliste 2006Biological effects are increasingly used to monitor impacts of contaminants in marine ecosystems. Biomarkers have been defined as âbiochemical, cellular, physiological or behavioural variations in the tissue or body fluids or at the level of whole organism that provide evidence of exposure to chemical pollutants, and may also indicate a toxic effectâ. The biomarkers reviewed here were PAH bile metabolites, cytochrome P4501A, glutathione S-transferase, markers for DNA damage (adducts, alkaline unwinding, Comet assay), micronucleus formation, peroxisomal proliferation, acetyl cholinesterase inhibition, metallothionein, vitellogenin and delta-aminolevulinic acid dehydratase. Focus for the review was dose-response relationships, confounding factors, links to population effects, baseline values, assessment criteria and quality assurance for the relevant biomarker. Whereas correlative links to population-relevant effects have been found for some biomarkers, e.g. biomarkers for DNA damage, most biomarkers are generally more useful as markers for possible impacts elsewhere in ecosystems.OL
- âŠ