66 research outputs found

    Carbon supported CdSe nanocrystals

    Full text link
    Insights to the mechanism of CdSe nanoparticle attachment to carbon nanotubes following the hot injection method are discussed. It was observed that the presence of water improves the nanotube coverage while Cl containing media are responsible for the shape transformation of the nanoparticles and further attachment to the carbon lattice. The experiments also show that the mechanism taking place involves the right balance of several factors, namely, low passivated nanoparticle surface, particles with well-defined crystallographic facets, and interaction with an organics-free sp2 carbon lattice. Furthermore, this procedure can be extended to cover graphene by quantum dots.Comment: 5 pages, 5 figure

    Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models

    Get PDF
    Electron Tomography (ET) reconstructions can be analysed, via segmentation techniques, to obtain quantitative, 3D-information about individual nanoparticles in supported catalysts. This includes values of parameters out of reach for any other technique, like their volume and surface, which are required to determine the dispersion of the supported particle system or the specific surface area of the support; two figures that play a major role in the performance of this type of catalysts. However, both the experimental conditions during the acquisition of the tilt series and the limited fidelity of the reconstruction and segmentation algorithms, restrict the quality of the ET results and introduce an undefined amount of error both in the qualitative features of the reconstructions and in all the quantitative parameters measured from them. Here, a method based on the use of well-defined 3D geometrical models (phantoms), with morphological features closely resembling those observed in experimental images of an Au/CeO2 catalyst, has been devised to provide a precise estimation of the accuracy of the reconstructions. Using this approach, the influence of noise and the number of projections on the errors of reconstructions obtained using a Total Variation Minimization in 3D (TVM-3D) algorithm have been determined. Likewise, the benefits of using smart denoising techniques based on Undecimated Wavelet Transforms (UWT) have been also evaluated. The results clearly reveal a large impact of usual noise levels on both the quality of the reconstructions and nanometrological measurement errors. Quantitative clues about the key role of UWT to largely compensate them are also provided.This work has received support from Projects: PID2020-113006-RB-I00, PID2019-110018GA-I00, PID2020-114594GB-C22, funded by MCIN/AEI/https://doi.org/10.13039/501100011033.This work has also been co-financed by Project ref: MAT2017-87579-R and by the 2014 -2020 ERDF Operational Programme and by the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia, Project references: FEDER-UCA18-107139, FEDERUCA18-106895 and P18-FR-1422. STEM ET experiments were recorded at the DME-UCA Node of the Spanish Singular Infrastructure for Electron Microscopy of Materials (ICTS ELECMI)

    Synthesis and Structural Characterization of Branched Bimetallic AuPd Nanoparticles with a Highly Tunable Optical Response

    Get PDF
    Bimetallic nanostructures composed of gold (Au) and palladium (Pd) have garnered increased interest for their applications in heterogeneous catalysis. This study reports a simple strategy for manufacturing Au@Pd bimetallic branched nanoparticles (NPs), which offer a tunable optical response, using polyallylamine-stabilized branched AuNPs as template cores for Pd overgrowth. The palladium content can be altered by manipulating the concentration of PdCl4 2− and ascorbic acid (AA) that are injected, which permit an overgrowth of the Pd shell up to ca. 2 nm thick. The homogeneous distribution of Pd at the surfaces of Au NPs can be carried out regardless of their size or branching degree, which allows for an adjustment of the plasmon response in the near-infrared (NIR) spectral range. As a proof of concept, the nanoenzymatic activity of pure gold and gold−palladium NPs was compared, exploring their peroxidase-like activity in the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB). The bimetallic AuPd NPs demonstrate an increase in the catalytic properties attributed to the presence of palladium at the surface of gold

    3D characterization of CdSe nanoparticles attached to carbon nanotubes

    Full text link
    The crystallographic structure of CdSe nanoparticles attached to carbon nanotubes has been elucidated by means of high resolution transmission electron microscopy and high angle annular dark field scanning transmission electron microscopy tomography. CdSe rod-like nanoparticles, grown in solution together with carbon nanotubes, undergo a morphological transformation and become attached to the carbon surface. Electron tomography reveals that the nanoparticles are hexagonal-based with the (001) planes epitaxially matched to the outer graphene layer.Comment: 7 pages, 8 figure

    The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability

    Get PDF
    Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications

    Synthesis of Nanosized (1− x

    No full text

    Sr 3

    No full text
    corecore