1,064 research outputs found

    Notes on a New Method for the Determination of the Magnetic Flux Density and Permeability

    Get PDF
    The method described gives a ready means for determining the magnetizing force, the corresponding flux density, and permeability at any wave length whatever. In taking a series of readings for different ampere-turns and at a definite wave length, we may obtain (a) the magnetization curve, (b) the permeability-ampere-turns curve. Since the suggested arrangement applies to any practically available wave length we have a convenient means to compare the B max -values for very long wave lengths with the corresponding values determined at higher frequencies, and thus obtain a clear insight into the skin action of an iron core. In a similar way the permeability-wave length curve may be found for a definite number of ampere turns. The method simultaneously determines either the total losses of the test sample or the losses due to direct current resistance, skin effect of the conductor, hysteresis and eddy currents in the iron core separately, and there can be obtained the (a) watts/unit volume-wave length curve for a certain number of ampere turns, (b) watts/unit volume-flux density curve at a constant wave length, and (c) watts/unit volume-thickness of laminations curve for a constant wave length and a constant number of ampere turns; which enables the investigator to ascertain all the conditions which are necessary for determining the desired properties of any radio frequency apparatus containing a ferro-magnetic medium. Moreover, by means of equations (14) and (15) one is able to experimentally investigate the dependance of the magnetizing force and permeability on the frequency

    Growth of axile and lateral roots of maize: I development of a phenotying platform

    Get PDF
    The objective of this study was to develop a phenotyping platform for the non-destructive, digital measurement of early root growth of axile and lateral roots and to evaluate its suitability for identifying maize (Zea mays L.) genotypes with contrasting root development. The system was designed to capture images of the root system within minutes and to batch process them automatically. For system establishment, roots of the inbred line Ac7729/TZSRW were grown until nine days after germination on the surface of a blotting paper in pouches. An A4 scanner was used for image acquisition followed by digital image analysis. Image processing was optimized to enhance the separation between the roots and the background and to remove image noise. Based on the root length in diameter-class distribution (RLDD), small-diameter lateral roots and large-diameter axile roots were separated. Root systems were scanned daily to model the growth dynamics of these root types. While the axile roots exhibited an almost linear growth, total lateral root length increased exponentially. Given the determined exponential growth, it was demonstrated that two plants, germinated one day apart but with the same growth rates differed in root length by 100%. From the growth rates we were able to identify contrasting genotypes from 236 recombinant inbred lines (RILs) of the CML444 x SC-Malawi cross. Differences in the growth of lateral roots of two selected RILs were due to differences in the final length and linear density of the primary lateral roots, as proven by the manual reanalysis of the digital images. The high throughput makes the phenotyping platform attractive for routine genetic studies and other screening purpose

    Model of molecular bonding based on the Bohr-Sommerfeld picture of atoms

    Get PDF
    We develop a model of molecular binding based on the Bohr-Sommerfeld description of atoms together with a constraint taken from conventional quantum mechanics. The model can describe the binding energy curves of H2, H3 and other molecules with striking accuracy. Our approach treats electrons as point particles with positions determined by extrema of an algebraic energy function. Our constrained model provides a physically appealing, accurate description of multi-electron chemical bonds.Comment: 5 pages, 7 figures, to appear in Physics Letters

    Анализ систем оценки информационно коммуникационных компетенций

    Get PDF
    The article considers the methods of development of information-analytical system of formation of information-communicative competence of students through the portal of "Electronic University of information technology"

    Genetic structure and history of Swiss maize ( Zea mays L. ssp. mays ) landraces

    Get PDF
    Between 1930 and 2003 with emphasis on the 1940s maize landraces (Zea mays L. ssp. mays) from all over Switzerland were collected for maintenance and further use in a new Swiss breeding program. The genetic relationship and diversity among these accessions stored in the Swiss gene bank is largely unknown. Our hypothesis was that due to the unique geographic, climatic, and cultural diversity in Switzerland a diverse population of maize landraces had developed over the past three centuries. The aims were to characterize the genetic diversity of the Swiss landraces and their genetic relationship with accessions from neighbouring regions as well as reviewing their history, collection, and maintenance. The characterization and grouping was based on analyses with ten microsatellite markers. Geographic, cultural, and climatic conditions explained a division in two distinct groups of accessions. One group consisted of landraces collected in the southern parts of Switzerland. This group was related to the Italian Orange Flints. The other group contained accessions from northern Switzerland which were related to Northern European Flints in particular German Flints. Historic evidence was found for a frequent exchange of landraces within the country resulting in a lack of region-specific or landrace-specific genetic groups. The relatively large separation between the accessions, indicated by high F ST (0.42), might be explained partly by a bottleneck during the collection and maintenance phase as well as by geographical and cultural separation of north and south of the country. Due to the high genetic diversity, the accessions here are a potential resource for broadening the European flint poo

    QTLs for early vigor of tropical maize

    Get PDF
    A strong photosynthetic performance and rapid leaf development, are important indicators of vigorous early growth. The aim of this study was to (1) evaluate the tropical maize (Zea mays L.) inbred lines CML444 and SC-Malawi for their photosynthetic performance at different growth stages and (2) assess quantitative trait loci (QTL) of photosynthesis-related traits in their 236 recombinant inbred lines at the heterotrophic growth stage. CML444 had a higher leaf chlorophyll (SPAD) content than SC-Malawi. Ten QTLs were found for the quantum efficiency of photosystem II (ΦPSII; four), SPAD (three) and the specific leaf area (SLA; three). The relevance of seedling QTLs for ΦPSII, SPAD and SLA for yield formation is emphasized by seven collocations (bins 5.01, 7.03, 8.05) with QTLs for kernel number and grain yield under field conditions. QTLs for SPAD at the V2 and at the reproductive stage did not collocate, indicating differences in the genetic control of SPAD at different growth stages. Knowing which loci affect SLA, SPAD and ΦPSII simultaneously and which do not will help to optimize light harvest by the canop

    QTL controlling root and shoot traits of maize seedlings under cold stress

    Get PDF
    The improvement of early vigour is crucial for the adaptation of maize (Zea mays L.) to the climatic conditions of central Europe and the northern Mediterranean, where early sowing is an important strategy for avoiding the effect of summer drought. The objectives of this study were to identify quantitative trait loci (QTL) controlling cold-related traits and to investigate the relationships among them. A set of 168 F2:4 families of the Lo964×Lo1016 cross was grown in a sand-vermiculite substrate at 15/13°C (day/night) until the one-leaf stage. Twenty QTL were identified for the four shoot and two seed traits examined. Analysis of root weight and digital measurements of the length and diameter of primary and seminal roots led to the identification of 40 QTL. The operating efficiency of photosystemII (ΦPSII) was related to seedling dry weight at both the phenotypic and genetic level (r=0.46, two matching loci, respectively) but was not related to root traits. Cluster analysis and QTL association revealed that the different root traits were largely independently inherited and that root lengths and diameters were mostly negatively correlated. The major QTL for root traits detected in an earlier study in hydroponics were confirmed in this study. The length of the primary lateral roots was negatively associated with the germination index (r=−0.38, two matching loci). Therefore, we found a large number of independently inherited loci suitable for the improvement of early seedling growth through better seed vigour and/or a higher rate of photosynthesi

    QTLs for the elongation of axile and lateral roots of maize in response to low water potential

    Get PDF
    Changes in root architecture and the maintenance of root growth in drying soil are key traits for the adaptation of maize (Zea mays L.) to drought environments. The goal of this study was to map quantitative trait loci (QTLs) for root growth and its response to dehydration in a population of 208 recombinant inbred lines from the International Maize and Wheat Improvement Center (CIMMYT). The parents, Ac7643 and Ac7729/TZSRW, are known to be drought-tolerant and drought-sensitive, respectively. Roots were grown in pouches under well-watered conditions or at low water potential induced by the osmolyte polyethylene glycol (PEG 8000). Axile root length (L Ax) increased linearly, while lateral root length (L Lat) increased exponentially over time. Thirteen QTLs were identified for six seedling traits: elongation rates of axile roots (ERAx), the rate constant of lateral root elongation (k Lat), the final respective lengths (L Ax and L Lat), and the ratios k Lat/ERAx and L Lat/L Ax. While QTLs for lateral root traits were constitutively expressed, most QTLs for axile root traits responded to water stress. For axile roots, common QTLs existed for ERAx and L Ax. Quantitative trait loci for the elongation rates of axile roots responded more clearly to water stress compared to root length. Two major QTLs were detected: a QTL for general vigor in bin 2.02, affecting most of the traits, and a QTL for the constitutive increase in k Lat and k Lat/ERAx in bins 6.04-6.05. The latter co-located with a major QTL for the anthesis-silking interval (ASI) reported in published field experiments, suggesting an involvement of root morphology in drought tolerance. Rapid seedling tests are feasible for elucidating the genetic response of root growth to low water potential. Some loci may even have pleiotropic effects on yield-related traits under drought stres

    Modified two-potential approach to tunneling problems

    Get PDF
    One-body quantum tunneling to continuum is treated via the two-potential approach, dividing the tunneling potential into external and internal parts. We show that corrections to this approach can be minimized by taking the separation radius inside the interval determined by simple expressions. The resulting two-potential approach reproduces the resonance energy and its width, both for narrow and wide resonances. We also demonstrate that, without losing its accuracy, the two-potential approach can be modified to a form resembling the R-matrix theory, yet without any uncertainties of the latter related to the choice of the matching radius.Comment: 7 two-column pages, 3 figures, extra-explanation added, Phys. Rev. A, in pres

    Quantum Dot Potentials: Symanzik Scaling, Resurgent Expansions and Quantum Dynamics

    Get PDF
    This article is concerned with a special class of the ``double-well-like'' potentials that occur naturally in the analysis of finite quantum systems. Special attention is paid, in particular, to the so-called Fokker-Planck potential, which has a particular property: the perturbation series for the ground-state energy vanishes to all orders in the coupling parameter, but the actual ground-state energy is positive and dominated by instanton configurations of the form exp(-a/g), where a is the instanton action. The instanton effects are most naturally taken into account within the modified Bohr-Sommerfeld quantization conditions whose expansion leads to the generalized perturbative expansions (so-called resurgent expansions) for the energy values of the Fokker-Planck potential. Until now, these resurgent expansions have been mainly applied for small values of coupling parameter g, while much less attention has been paid to the strong-coupling regime. In this contribution, we compare the energy values, obtained by directly resumming generalized Bohr-Sommerfeld quantization conditions, to the strong-coupling expansion, for which we determine the first few expansion coefficients in powers of g^(-2/3). Detailed calculations are performed for a wide range of coupling parameters g and indicate a considerable overlap between the regions of validity of the weak-coupling resurgent series and of the strong-coupling expansion. Apart from the analysis of the energy spectrum of the Fokker-Planck Hamiltonian, we also briefly discuss the computation of its eigenfunctions. These eigenfunctions may be utilized for the numerical integration of the (single-particle) time-dependent Schroedinger equation and, hence, for studying the dynamical evolution of the wavepackets in the double-well-like potentials.Comment: 13 pages; RevTe
    corecore