2,694 research outputs found
Thin film superconducting quantum interferometer with ultralow inductance
A simple method has been developed for manufacturing a thin film
superconducting quantum interferometer (SQI) with ultralow inductance (~10^-13
H). Current-voltage and voltage-field characteristics of the SQI are presented.
The basic design equations are obtained and confirmed experimentally. The SQI
has been used for the first time to determine the penetration depth of a
magnetic field into a film of 50% In-50% Sn alloy.Comment: 5 pages, 5 gigure
Geometric observation for the Bures fidelity between two states of a qubit
In this Brief Report, we present a geometric observation for the Bures
fidelity between two states of a qubit.Comment: 4 pages, 1 figure, RevTex, Accepted by Phys. Rev.
Direct Josephson coupling between superconducting flux qubits
We have demonstrated strong antiferromagnetic coupling between two
three-junction flux qubits based on a shared Josephson junction, and therefore
not limited by the small inductances of the qubit loops. The coupling sign and
magnitude were measured by coupling the system to a high-quality
superconducting tank circuit. Design modifications allowing to continuously
tune the coupling strength and/or make the coupling ferromagnetic are
discussed.Comment: REVTeX 4, 4 pages, 5 figures; v2: completely rewritten, added
finite-temperature results and proposals for ferromagnetic galvanic couplin
Simulation, Experiment, and Evolution: Understanding Nucleation in Protein S6 Folding
In this study, we explore nucleation and the transition state ensemble of the
ribosomal protein S6 using a Monte Carlo Go model in conjunction with
restraints from experiment. The results are analyzed in the context of
extensive experimental and evolutionary data. The roles of individual residues
in the folding nucleus are identified and the order of events in the S6 folding
mechanism is explored in detail. Interpretation of our results agrees with, and
extends the utility of, experiments that shift f-values by modulating
denaturant concentration and presents strong evidence for the realism of the
mechanistic details in our Monte Carlo Go model and the structural
interpretation of experimental f-values. We also observe plasticity in the
contacts of the hydrophobic core that support the specific nucleus. For S6,
which binds to RNA and protein after folding, this plasticity may result from
the conformational flexibility required to achieve biological function. These
results present a theoretical and conceptual picture that is relevant in
understanding the mechanism of nucleation in protein folding.Comment: PNAS in pres
Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. A Tutorial
A new computational technique based on the symbolic description utilizing
kneading invariants is proposed and verified for explorations of dynamical and
parametric chaos in a few exemplary systems with the Lorenz attractor. The
technique allows for uncovering the stunning complexity and universality of
bi-parametric structures and detect their organizing centers - codimension-two
T-points and separating saddles in the kneading-based scans of the iconic
Lorenz equation from hydrodynamics, a normal model from mathematics, and a
laser model from nonlinear optics.Comment: Journal of Bifurcations and Chaos, 201
Identification of the Staphylococcus sciuri Species Group with EcoRI Fragments Containing rRNA Sequences and Description of Staphylococcus vitulus sp. nov.
Cauchy boundaries in linearized gravitational theory
We investigate the numerical stability of Cauchy evolution of linearized
gravitational theory in a 3-dimensional bounded domain. Criteria of robust
stability are proposed, developed into a testbed and used to study various
evolution-boundary algorithms. We construct a standard explicit finite
difference code which solves the unconstrained linearized Einstein equations in
the 3+1 formulation and measure its stability properties under Dirichlet,
Neumann and Sommerfeld boundary conditions. We demonstrate the robust stability
of a specific evolution-boundary algorithm under random constraint violating
initial data and random boundary data.Comment: 23 pages including 3 figures and 2 tables, revte
- …
