1,410 research outputs found

    Putting the Community Back into Community Networks: A Content Analysis

    Get PDF
    This study examines the role that community networks can take in fulfilling McQuail\u27s call for a more democratic participant form of media. Community networks, which are grassroots organizations designed to promote local community initiatives, increased their presence on the Internet in the 1990s. However, in recent years their number has declined. Research suggests that community networks fail because they lack a unified identity, have not determined their specific purpose on the Web, and do not provide relevant information to network members. Findings suggest that community networks wishing to achieve sustainability should concentrate their efforts on developing social capital and fostering strong democracy on their sites. The extent to which existing community networks are working toward developing such content is assessed

    Sonic boom in turbulence

    Get PDF
    Poisson density functions and factor analysis of shock wave propagation and sonic boom spectra in turbulent flo

    Direct and indirect lactate oxidation in trained and untrained men.

    Get PDF
    Lactate has been shown to be an important oxidative fuel. We aimed to quantify the total lactate oxidation rate (Rox) and its direct vs. indirect (glucose that is gluconeogenically derived from lactate and subsequently oxidized) components (mgĀ·kg(-1)Ā·min(-1)) during rest and exercise in humans. We also investigated the effects of endurance training, exercise intensity, and blood lactate concentration ([lactate]b) on direct and indirect lactate oxidation. Six untrained (UT) and six trained (T) men completed 60 min of constant load exercise at power outputs corresponding to their lactate threshold (LT). T subjects completed two additional 60-min sessions of constant load exercise at 10% below the LT workload (LT-10%), one of which included a lactate clamp (LC; LT-10%+LC). Rox was higher at LT in T [22.7 Ā± 2.9, 75% peak oxygen consumption (Vo2peak)] compared with UT (13.4 Ā± 2.5, 68% Vo2peak, P < 0.05). Increasing [lactate]b (LT-10%+LC, 67% Vo2peak) significantly increased lactate Rox (27.9 Ā± 3.0) compared with its corresponding LT-10% control (15.9 Ā± 2.2, P < 0.05). Direct and indirect Rox increased significantly from rest to exercise, and their relative partitioning remained constant in all trials but differed between T and UT: direct oxidation comprised 75% of total lactate oxidation in UT and 90% in T, suggesting the presence of training-induced adaptations. Partitioning of total carbohydrate (CHO) use showed that subjects derived one-third of CHO energy from blood lactate, and exogenous lactate infusion increased lactate oxidation significantly, causing a glycogen-sparing effect in exercising muscle

    Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects.

    Get PDF
    We evaluated the hypothesis that lactate shuttling helps support the nutritive needs of injured brains. To that end, we utilized dual isotope tracer [6,6-(2)H2]glucose, that is, D2-glucose, and [3-(13)C]lactate techniques involving arm vein tracer infusion along with simultaneous cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Traumatic brain injury (TBI) patients with nonpenetrating brain injuries (n=12) were entered into the study following consent of patients' legal representatives. Written and informed consent was obtained from control volunteers (n=6). Patients were studied 5.7Ā±2.2 (meanĀ±SD) days post-injury; during periods when arterial glucose concentration tended to be higher in TBI patients. As in previous investigations, the cerebral metabolic rate for glucose (CMRgluc, i.e., net glucose uptake) was significantly suppressed following TBI (p<0.001). However, lactate fractional extraction, an index of cerebral lactate uptake related to systemic lactate supply, approximated 11% in both healthy control subjects and TBI patients. Further, neither the CMR for lactate (CMRlac, i.e., net lactate release), nor the tracer-measured cerebral lactate uptake differed between healthy controls and TBI patients. The percentages of lactate tracer taken up and released as (13)CO2 into the JB accounted for 92% and 91% for control and TBI conditions, respectively, suggesting that most cerebral lactate uptake was oxidized following TBI. Comparisons of isotopic enrichments of lactate oxidation from infused [3-(13)C]lactate tracer and (13)C-glucose produced during hepatic and renal gluconeogenesis (GNG) showed that 75-80% of (13)CO2 released into the JB was from lactate and that the remainder was from the oxidation of glucose secondarily labeled from lactate. Hence, either directly as lactate uptake, or indirectly via GNG, peripheral lactate production accounted for āˆ¼70% of carbohydrate (direct lactate uptake+uptake of glucose from lactate) consumed by the injured brain. Undiminished cerebral lactate fractional extraction and uptake suggest that arterial lactate supplementation may be used to compensate for decreased CMRgluc following TBI

    Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis.

    Get PDF
    We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-(2)H2]glucose, i.e., D2-glucose, and [3-(13)C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7Ā±2.2 days (range of days 2-10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain

    Naval Postgraduate School NPSAT1 Small Satellite

    Get PDF
    Paper presented at the ESA Small Satellite Systems and Services SymposiumThe NPSAT1 mission, conceived and developed by the Naval Postgraduate School (NPS) Space Systems Academic Group (SSAG), is sponsored and executed by the DoD Space Test Program (SMC SDD). The small satellite is manifested for launch aboard the STP-1 Atlas V Mission due to launch in December 2006. The main objective of the NPSAT1 program is to provide educational opportunities for the offi cer students in the Space Systems Curricula at NPS through the design, testing, integration, and fl ight operations of a small satellite. The 82 kg (180 lbs) satellite will be earth-pointing using a novel, low-cost, 3-axis attitude control scheme. NPSAT1 will provide a platform for a number of spacecraft technology experiments, including a lithium-ion battery, a confi gurable, fault-tolerant processor (CFTP) experiment, and fl ight demonstrations of commercial, off-the-shelf (COTS) components such as microelectromechanical systems (MEMS) rate sensors and a digital camera. The spacecraft command and data handling (C&DH) subsystem is NPS-designed, featuring low-power with error-detection-and-correction (EDAC) memory, an ARM720T microprocessor, and running Linux as the operating system. Two other experiments are provided by the Naval Research Laboratory to investigate ionospheric physics. This paper presents an overview of the spacecraft, its subsystems, and the challenges of a small satellite program in a university environment.Naval Postgraduate School, Monterey, California

    Summing the strokes: energy economy in northern elephant seals during large-scale foraging migrations.

    Get PDF
    BackgroundThe energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predators on ecosystems. Given their large body size and carnivorous lifestyle, we would predict that northern elephant seals (Mirounga angustirostris) have elevated field metabolic rates (FMRs) that require high prey intake rates, especially during pregnancy. Disturbance associated with climate change or human activity is predicted to further elevate energy requirements due to an increase in locomotor costs required to accommodate a reduction in prey or time available to forage. In this study, we determined the FMRs, total energy requirements, and energy budgets of adult, female northern elephant seals. We also examined the impact of increased locomotor costs on foraging success in this species.ResultsBody size, time spent at sea and reproductive status strongly influenced FMR. During the short foraging migration, FMR averaged 90.1 (SEā€‰=ā€‰1.7) kJ kg(-1)d(-1) - only 36 % greater than predicted basal metabolic rate. During the long migration, when seals were pregnant, FMRs averaged 69.4 (Ā±3.0) kJ kg(-1)d(-1) - values approaching those predicted to be necessary to support basal metabolism in mammals of this size. Low FMRs in pregnant seals were driven by hypometabolism coupled with a positive feedback loop between improving body condition and reduced flipper stroking frequency. In contrast, three additional seals carrying large, non-streamlined instrumentation saw a four-fold increase in energy partitioned toward locomotion, resulting in elevated FMRs and only half the mass gain of normally-swimming study animals.ConclusionsThese results highlight the importance of keeping locomotion costs low for successful foraging in this species. In preparation for lactation and two fasting periods with high demands on energy reserves, migrating elephant seals utilize an economical foraging strategy whereby energy savings from reduced locomotion costs are shuttled towards somatic growth and fetal gestation. Remarkably, the energy requirements of this species, particularly during pregnancy, are 70-80 % lower than expected for mammalian carnivores, approaching or even falling below values predicted to be necessary to support basal metabolism in mammals of this size

    Recycling of Deuterium From Dideuterated Glucose During Moderate Exercise

    Get PDF
    A doubly labelled tracer molecule of glucose, [6,6-2HJglucose, has been used to measure the rate of glucose appearance in blood due to endogenous glucose production (by the liver and kidneysj.l,2 Considered \u27non-recirculating\u27, this tracer generally provides a realistic estimate of glucose kinetics.2,3 Used as a dual tracer in conjunction with [l-13C]glucose, the extent of glucose recycling can be quantitated.2-4 but the extent of possible recirculation of a single deuterium atom on newly formed glucose must then be considered

    Local seismicity of the Rainbow massif on the Midā€Atlantic Ridge

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123 (2018): 1615-1630, doi:10.1002/2017JB015288.The Rainbow massif, an oceanic core complex located in a nontransform discontinuity on the Midā€Atlantic Ridge (36Ā°N), is notable for hosting highā€temperature hydrothermal discharge through ultramafic rocks. Here we report results from a 9 month microearthquake survey conducted with a network of 13 ocean bottom seismometers deployed on and around the Rainbow massif as part of the MARINER experiment in 2013ā€“2014. High rates (~300 per day) of lowā€magnitude (average ML ~ 0.5) microearthquakes were detected beneath the massif. The hypocenters do not cluster along deeply penetrating fault surfaces and do not exhibit mainshock/aftershock sequences, supporting the hypothesis that the faulting associated with the exhumation of the massif is currently inactive. Instead, the hypocenters demarcate a diffuse zone of continuous, lowā€magnitude deformation at relatively shallow (< ~3 km) depths beneath the massif, sandwiched in between the seafloor and seismic reflectors interpreted to be magmatic sills driving hydrothermal convection. Most of the seismicity is located in regions where seismic refraction data indicate serpentinized ultramafic host rock, and although the seismic network we deployed was not capable of constraining the focal mechanism of most events, our analysis suggests that serpentinization may play an important role in microearthquake generation at the Rainbow massif.NSF Grant Numbers: OCEā€0961680, OCEā€09611512018-07-2

    Stepping on Computer Floor Stringer Leads to Ankle Fracture

    Get PDF
    • ā€¦
    corecore