1,615 research outputs found

    Global Computation in a Poorly Connected World: Fast Rumor Spreading with No Dependence on Conductance

    Get PDF
    In this paper, we study the question of how efficiently a collection of interconnected nodes can perform a global computation in the widely studied GOSSIP model of communication. In this model, nodes do not know the global topology of the network, and they may only initiate contact with a single neighbor in each round. This model contrasts with the much less restrictive LOCAL model, where a node may simultaneously communicate with all of its neighbors in a single round. A basic question in this setting is how many rounds of communication are required for the information dissemination problem, in which each node has some piece of information and is required to collect all others. In this paper, we give an algorithm that solves the information dissemination problem in at most O(D+polylog(n))O(D+\text{polylog}{(n)}) rounds in a network of diameter DD, withno dependence on the conductance. This is at most an additive polylogarithmic factor from the trivial lower bound of DD, which applies even in the LOCAL model. In fact, we prove that something stronger is true: any algorithm that requires TT rounds in the LOCAL model can be simulated in O(T+polylog(n))O(T +\mathrm{polylog}(n)) rounds in the GOSSIP model. We thus prove that these two models of distributed computation are essentially equivalent

    Silent MST approximation for tiny memory

    Get PDF
    In network distributed computing, minimum spanning tree (MST) is one of the key problems, and silent self-stabilization one of the most demanding fault-tolerance properties. For this problem and this model, a polynomial-time algorithm with O(log2 ⁣n)O(\log^2\!n) memory is known for the state model. This is memory optimal for weights in the classic [1,poly(n)][1,\text{poly}(n)] range (where nn is the size of the network). In this paper, we go below this O(log2 ⁣n)O(\log^2\!n) memory, using approximation and parametrized complexity. More specifically, our contributions are two-fold. We introduce a second parameter~ss, which is the space needed to encode a weight, and we design a silent polynomial-time self-stabilizing algorithm, with space O(logns)O(\log n \cdot s). In turn, this allows us to get an approximation algorithm for the problem, with a trade-off between the approximation ratio of the solution and the space used. For polynomial weights, this trade-off goes smoothly from memory O(logn)O(\log n) for an nn-approximation, to memory O(log2 ⁣n)O(\log^2\!n) for exact solutions, with for example memory O(lognloglogn)O(\log n\log\log n) for a 2-approximation

    Effects of adenotonsillectomy on plasma inflammatory biomarkers in obese children with obstructive sleep apnea: A community-based study.

    Get PDF
    BackgroundObesity and obstructive sleep apnea syndrome (OSA) are highly prevalent and frequently overlapping conditions in children that lead to systemic inflammation, the latter being implicated in the various end-organ morbidities associated with these conditions.AimTo examine the effects of adenotonsillectomy (T&A) on plasma levels of inflammatory markers in obese children with polysomnographically diagnosed OSA who were prospectively recruited from the community.MethodsObese children prospectively diagnosed with OSA, underwent T&A and a second overnight polysomnogram (PSG) after surgery. Plasma fasting morning samples obtained after each of the two PSGs were assayed for multiple inflammatory and metabolic markers including interleukin (IL)-6, IL-18, plasminogen activator inhibitor-1 (PAI-1), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9), adiponectin, apelin C, leptin and osteocrin.ResultsOut of 122 potential candidates, 100 obese children with OSA completed the study with only one-third exhibiting normalization of their PSG after T&A (that is, apnea-hypopnea index (AHI) ≤1/hour total sleep time). However, overall significant decreases in MCP-1, PAI-1, MMP-9, IL-18 and IL-6, and increases in adropin and osteocrin plasma concentrations occurred after T&A. Several of the T&A-responsive biomarkers exhibited excellent sensitivity and moderate specificity to predict residual OSA (that is, AHI⩾5/hTST).ConclusionsA defined subset of systemic inflammatory and metabolic biomarkers is reversibly altered in the context of OSA among community-based obese children, further reinforcing the concept on the interactive pro-inflammatory effects of sleep disorders such as OSA and obesity contributing to downstream end-organ morbidities

    A latent variable ranking model for content-based retrieval

    Get PDF
    34th European Conference on IR Research, ECIR 2012, Barcelona, Spain, April 1-5, 2012. ProceedingsSince their introduction, ranking SVM models [11] have become a powerful tool for training content-based retrieval systems. All we need for training a model are retrieval examples in the form of triplet constraints, i.e. examples specifying that relative to some query, a database item a should be ranked higher than database item b. These types of constraints could be obtained from feedback of users of the retrieval system. Most previous ranking models learn either a global combination of elementary similarity functions or a combination defined with respect to a single database item. Instead, we propose a “coarse to fine” ranking model where given a query we first compute a distribution over “coarse” classes and then use the linear combination that has been optimized for queries of that class. These coarse classes are hidden and need to be induced by the training algorithm. We propose a latent variable ranking model that induces both the latent classes and the weights of the linear combination for each class from ranking triplets. Our experiments over two large image datasets and a text retrieval dataset show the advantages of our model over learning a global combination as well as a combination for each test point (i.e. transductive setting). Furthermore, compared to the transductive approach our model has a clear computational advantages since it does not need to be retrained for each test query.Spanish Ministry of Science and Innovation (JCI-2009-04240)EU PASCAL2 Network of Excellence (FP7-ICT-216886

    Superregular grammars do not provide additional explanatory power but allow for a compact analysis of animal song

    Get PDF
    A pervasive belief with regard to the differences between human language and animal vocal sequences (song) is that they belong to different classes of computational complexity, with animal song belonging to regular languages, whereas human language is superregular. This argument, however, lacks empirical evidence since superregular analyses of animal song are understudied. The goal of this paper is to perform a superregular analysis of animal song, using data from gibbons as a case study, and demonstrate that a superregular analysis can be effectively used with non-human data. A key finding is that a superregular analysis does not increase explanatory power but rather provides for compact analysis: Fewer grammatical rules are necessary once superregularity is allowed. This pattern is analogous to a previous computational analysis of human language, and accordingly, the null hypothesis, that human language and animal song are governed by the same type of grammatical systems, cannot be rejected.Comment: Accepted for publication by Royal Society Open Scienc

    Predicting the operability of damaged compressors using machine learning

    Get PDF
    Abstract The application of machine learning to aerospace problems faces a particular challenge. For successful learning a large amount of good quality training data is required, typically tens of thousands of cases. However, due to the time and cost of experimental aerospace testing, this data is scarce. This paper shows that successful learning is possible with two novel techniques: The first technique is rapid testing. Over the last five years the Whittle Laboratory has developed a capability where rebuild and test times of a compressor stage now take 15 minutes instead of weeks. The second technique is to base machine learning on physical parameters, derived from engineering wisdom developed in industry over many decades. The method is applied to the important industry problem of predicting the effect of blade damage on compressor operability. The current approach has high uncertainty, it is based on human judgement and correlation of a handful of experimental test cases. It is shown using 100 training cases and 25 test cases that the new method is able to predict the operability of damaged compressor stages with an accuracy of 2% in a 95% confidence interval; far better than is possible by even the most experienced compressor designers. Use of the method is also shown to generate new physical understanding, previously unknown by any of the experts involved in this work. Using this method in the future offers an exciting opportunity to generate understanding of previously intractable problems in aerospace.Aerospace Technology Institute Rolls-Royce plc

    Genetic diversity and population structure inferred from the partially duplicated genome of domesticated carp, Cyprinus carpio L.

    Get PDF
    Genetic relationships among eight populations of domesticated carp (Cyprinus carpio L.), a species with a partially duplicated genome, were studied using 12 microsatellites and 505 AFLP bands. The populations included three aquacultured carp strains and five ornamental carp (koi) variants. Grass carp (Ctenopharyngodon idella) was used as an outgroup. AFLP-based gene diversity varied from 5% (grass carp) to 32% (koi) and reflected the reasonably well understood histories and breeding practices of the populations. A large fraction of the molecular variance was due to differences between aquacultured and ornamental carps. Further analyses based on microsatellite data, including cluster analysis and neighbor-joining trees, supported the genetic distinctiveness of aquacultured and ornamental carps, despite the recent divergence of the two groups. In contrast to what was observed for AFLP-based diversity, the frequency of heterozygotes based on microsatellites was comparable among all populations. This discrepancy can potentially be explained by duplication of some loci in Cyprinus carpio L., and a model that shows how duplication can increase heterozygosity estimates for microsatellites but not for AFLP loci is discussed. Our analyses in carp can help in understanding the consequences of genotyping duplicated loci and in interpreting discrepancies between dominant and co-dominant markers in species with recent genome duplication

    Distributed Edge Connectivity in Sublinear Time

    Full text link
    We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ\lambda exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes O~(n11/353D1/353+n11/706)\tilde O(n^{1-1/353}D^{1/353}+n^{1-1/706}) time to compute λ\lambda and a cut of cardinality λ\lambda with high probability, where nn and DD are the number of nodes and the diameter of the network, respectively, and O~\tilde O hides polylogarithmic factors. This running time is sublinear in nn (i.e. O~(n1ϵ)\tilde O(n^{1-\epsilon})) whenever DD is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8ϵ)\lambda=O(n^{1/8-\epsilon}) [Thurimella PODC'95; Pritchard, Thurimella, ACM Trans. Algorithms'11; Nanongkai, Su, DISC'14] or (ii) approximately [Ghaffari, Kuhn, DISC'13; Nanongkai, Su, DISC'14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a kk-edge connectivity certificate for any k=O(n1ϵ)k=O(n^{1-\epsilon}) in time O~(nk+D)\tilde O(\sqrt{nk}+D). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA'19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC'15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the `trivial' ones). Finally, by extending the tree packing technique from [Karger STOC'96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an O~(n)\tilde O(n)-time algorithm for computing exact minimum cut for weighted graphs.Comment: Accepted at 51st ACM Symposium on Theory of Computing (STOC 2019

    Graph-Based Shape Analysis Beyond Context-Freeness

    Full text link
    We develop a shape analysis for reasoning about relational properties of data structures. Both the concrete and the abstract domain are represented by hypergraphs. The analysis is parameterized by user-supplied indexed graph grammars to guide concretization and abstraction. This novel extension of context-free graph grammars is powerful enough to model complex data structures such as balanced binary trees with parent pointers, while preserving most desirable properties of context-free graph grammars. One strength of our analysis is that no artifacts apart from grammars are required from the user; it thus offers a high degree of automation. We implemented our analysis and successfully applied it to various programs manipulating AVL trees, (doubly-linked) lists, and combinations of both
    corecore