721 research outputs found
Treatment of Advanced Emphysema with Emphysematous Lung Sealant (AeriSeal (R))
Background: This report summarizes initial tests of an emphysematous lung synthetic polymer sealant (ELS) designed to reduce lung volume in patients with advanced emphysema. Objectives: The primary study objective was to define a therapeutic strategy to optimize treatment safety and effectiveness. Methods: ELS therapy was administered bronchoscopically to 25 patients with heterogeneous emphysema in an open-label, noncontrolled study at 6 centers in Germany. Treatment was performed initially at 2-4 subsegments. After 12 weeks, patients were eligible for repeat therapy to a total of 6 sites. Safety and efficacy were assessed after 6 months. Responses were evaluated in terms of changes from baseline in lung physiology, functional capacity, and health-related quality of life. Follow-up is available for 21 of 25 patients. Results: Treatment was well tolerated. There were no treatment-related deaths (i.e. within 90 days of treatment), and an acceptable short-and long-term safety profile. Physiological and clinical benefits were observed at 24 weeks. Efficacy responses were better among Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage III patients {[}n = 14; change in residual volume/total lung capacity (Delta RV/TLC) = -7.4 +/- 10.3%; Delta forced expiratory volume in 1 s (Delta FEV(1)) = +15.9 +/- 22.6%; change in forced vital capacity (Delta FVC) = +24.1 +/- 22.7%; change in carbon monoxide lung diffusion capacity (Delta DLCO) = +19.3 +/- 34.8%; change in 6-min walk test (Delta 6MWD) = +28.7 +/- 59.6 m; change in Medical Research Council Dyspnea (Delta MRCD) score = -1.0 +/- 1.04 units; change in St. George's Respiratory Questionnaire (Delta SGRQ) score = -9.9 +/- 15.3 units] than for GOLD stage IV patients (n = 7; Delta RV/TLC = -0.5 +/- 6.4%; Delta FEV 1 = +2.3 +/- 12.3%; Delta FVC = +2.6 +/- 21.1%; Delta DLCO = -2.8 +/- 17.2%; Delta 6MWD = +28.3 +/- 58.4 m; Delta MRCD = 0.3 +/- 0.81 units; Delta SGRQ = -6.7 +/- 7.0 units). Conclusions: ELS therapy shows promise for treating patients with advanced heterogeneous emphysema. Additional studies to assess responses in a larger cohort with a longer follow-up are warranted. Copyright (C) 2011 S. Karger AG, Base
Bronchoscopic Measurement of Collateral Ventilation: State of the Art
Endoscopic lung volume reduction procedure with valves is a well-studied treatment option for advanced lung emphysema to target lung hyperinflation in carefully selected patients with COPD. Before valve implantation, collateral ventilation (CV) of the target lobe needs to be assessed to obtain an optimal treatment effect. The analysis of CV according to current standards occurs via an in vivo assessment with the Chartis (R) system (PulmonX Inc., Redwood City, CA, USA) and a computed tomography (CT) scan of the thorax with interlobar fissure analysis. The focus of this review is to provide detailed information about the Chartis (R) procedure and interpretation of Chartis (R) phenotypes. As a main tool in the assessment of CV and being a safe procedure, the Chartis (R) assessment should be performed by default to confirm interlobar fissure analysis in most emphysema patients. Based on the obtained results, lung volume reduction therapy options should be discussed in an interdisciplinary emphysema conference
Clinical highlights from the 2011 ERS Congress in Amsterdam
This article reports on selected papers pertinent to the most important clinical problems in the field of respiratory medicine. Expert authors from the Clinical Assembly of the European Respiratory Society (ERS) have selected updated reports related to presentations given at the 2011 ERS Annual Congress, which was held in Amsterdam (the Netherlands) and attended by more than 20,000 participants. The hot topics and selected abstracts from the scientific groups of the Clinical Assembly are discussed here in the context of recent literature
Survival-Adjusted FEV1 and BMI Percentiles for Patients with Cystic Fibrosis before the Era of Triple CFTR Modulator Therapy in Germany
Background: Pulmonary disease is the major cause for morbidity and mortality in cystic fibrosis (CF). In CF, forced expiratory volume in 1 s (FEV1) referenced against a healthy population (FEV1%predicted) and body mass index (BMI) do not allow for the comparison of disease severity across age and gender. Objectives: We aimed to determine updated FEV1 and BMI percentiles for patients with CF and to study their dependence on mortality attrition. Methods: Age- and height-adjusted FEV1 and BMI percentiles for CF patients aged 6-50 years were calculated from 4,947 patients of the German CF Registry for the period 2016-2019 utilizing quantile regression and a Generalized Additive Model for Location, Scale and Shape (GAMLSS). Further, survival-adjusted percentiles were estimated. Results: In patients with CF, FEV1 increased throughout childhood until maximal median values at 16 years in females (2.46 L) and 18 years in males (3.27 L). During adulthood, FEV1 decreased substantially. At 17 years of age, the 25th BMI percentile of patients with CF (females 18.50 and males 18.15 kg/m(2)) was below the 10th BMI percentile of the German reference cohort. From the age of 20 years, survival (96.3%) decreased tremendously. At 50 years of age (survival 15.0%), the 50th CF-specific FEV1 or BMI percentile among the survivors corresponded to the 92.5th percentile among the total CF birth cohort. Conclusions: Continuously updated disease-specific FEV1 and BMI percentiles with correction for survival may serve as age-independent measure of disease severity in CF (accessible via https://cfpercentiles.statup.solutions)
Simultaneous computed tomography-guided biopsy and radiofrequency ablation of solitary pulmonary malignancy in high-risk patients
Background: In recent years experience has been accumulated in percutaneous radiofrequency ablation (RFA) of lung malignancies in nonsurgical patients. Objectives: In this study, we retrospectively evaluated a simultaneous diagnostic and therapeutic approach including CT-guided biopsy followed immediately by RFA of solitary malignant pulmonary lesions. Methods: CT-guided transthoracic core needle biopsy of solitary pulmonary lesions suspicious for malignancy was performed and histology was proven based on immediate frozen sections. RFA probes were placed into the pulmonary tumors under CT guidance and the ablation was performed subsequently. The procedure-related morbidity was analyzed. Follow-up included a CT scan and pulmonary function parameters. Results: A total of 33 CT-guided biopsies and subsequent RFA within a single procedure were performed. Morbidity of CT-guided biopsy included pulmonary hemorrhage (24%) and a mild pneumothorax (12%) without need for further interventions. The RFA procedure was not aggravated by the previous biopsy. The rate of pneumothorax requiring chest tube following RFA was 21%. Local tumor control was achieved in 77% with a median follow-up of 12 months. The morbidity of the CT-guided biopsy had no statistical impact on the local recurrence rate. Conclusions: The simultaneous diagnostic and therapeutic approach including CT-guided biopsy followed immediately by RFA of solitary malignant pulmonary lesions is a safe procedure. The potential of this combined approach is to avoid unnecessary therapies and to perform adequate therapies based on histology. Taking the local control rate into account, this approach should only be performed in those patients who are unable to undergo or who refuse surgery. Copyright (C) 2012 S. Karger AG, Base
- …