743 research outputs found

    Horizon Pretracking

    Full text link
    We introduce horizon pretracking as a method for analysing numerically generated spacetimes of merging black holes. Pretracking consists of following certain modified constant expansion surfaces during a simulation before a common apparent horizon has formed. The tracked surfaces exist at all times, and are defined so as to include the common apparent horizon if it exists. The method provides a way for finding this common apparent horizon in an efficient and reliable manner at the earliest possible time. We can distinguish inner and outer horizons by examining the distortion of the surface. Properties of the pretracking surface such as its expansion, location, shape, area, and angular momentum can also be used to predict when a common apparent horizon will appear, and its characteristics. The latter could also be used to feed back into the simulation by adapting e.g. boundary or gauge conditions even before the common apparent horizon has formed.Comment: 14 pages, 8 figures, minor change

    Binary Black Holes: Spin Dynamics and Gravitational Recoil

    Full text link
    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are anti-aligned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with anti-aligned spins to fit the parameters in the \KKF{,} and verify that the recoil along the direction of the orbital angular momentum is sinθ\propto \sin\theta and on the orbital plane cosθ\propto \cos\theta, with θ\theta the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius.Comment: 15 pages, 10 figures, replaced with version accepted for publication in PR

    Gravitational recoil from spinning binary black hole mergers

    Get PDF
    The inspiral and merger of binary black holes will likely involve black holes with both unequal masses and arbitrary spins. The gravitational radiation emitted by these binaries will carry angular as well as linear momentum. A net flux of emitted linear momentum implies that the black hole produced by the merger will experience a recoil or kick. Previous studies have focused on the recoil velocity from unequal mass, non-spinning binaries. We present results from simulations of equal mass but spinning black hole binaries and show how a significant gravitational recoil can also be obtained in these situations. We consider the case of black holes with opposite spins of magnitude aa aligned/anti-aligned with the orbital angular momentum, with aa the dimensionless spin parameters of the individual holes. For the initial setups under consideration, we find a recoil velocity of V = 475 \KMS a. Supermassive black hole mergers producing kicks of this magnitude could result in the ejection from the cores of dwarf galaxies of the final hole produced by the collision.Comment: 8 pages, 8 figures, replaced with version accepted for publication in Ap

    Continuous Damage Fiber Bundle Model for Strongly Disordered Materials

    Full text link
    We present an extension of the continuous damage fiber bundle model to describe the gradual degradation of highly heterogeneous materials under an increasing external load. Breaking of a fiber in the model is preceded by a sequence of partial failure events occurring at random threshold values. In order to capture the subsequent propagation and arrest of cracks, furthermore, the disorder of the number of degradation steps of material constituents, the failure thresholds of single fibers are sorted into ascending order and their total number is a Poissonian distributed random variable over the fibers. Analytical and numerical calculations showed that the failure process of the system is governed by extreme value statistics, which has a substantial effect on the macroscopic constitutive behaviour and on the microscopic bursting activity as well.Comment: 10 pages, 13 figure

    Percolation with excluded small clusters and Coulomb blockade in a granular system

    Full text link
    We consider dc-conductivity σ\sigma of a mixture of small conducting and insulating grains slightly below the percolation threshold, where finite clusters of conducting grains are characterized by a wide spectrum of sizes. The charge transport is controlled by tunneling of carriers between neighboring conducting clusters via short ``links'' consisting of one insulating grain. Upon lowering temperature small clusters (up to some TT-dependent size) become Coulomb blockaded, and are avoided, if possible, by relevant hopping paths. We introduce a relevant percolational problem of next-nearest-neighbors (NNN) conductivity with excluded small clusters and demonstrate (both numerically and analytically) that σ\sigma decreases as power law of the size of excluded clusters. As a physical consequence, the conductivity is a power-law function of temperature in a wide intermediate temperature range. We express the corresponding index through known critical indices of the percolation theory and confirm this relation numerically.Comment: 7 pages, 6 figure

    Unequal Mass Binary Black Hole Plunges and Gravitational Recoil

    Full text link
    We present results from fully nonlinear simulations of unequal mass binary black holes plunging from close separations well inside the innermost stable circular orbit with mass ratios q = M_1/M_2 = {1,0.85,0.78,0.55,0.32}, or equivalently, with reduced mass parameters η=M1M2/(M1+M2)2=0.25,0.248,0.246,0.229,0.183\eta=M_1M_2/(M_1+M_2)^2 = {0.25, 0.248, 0.246, 0.229, 0.183}. For each case, the initial binary orbital parameters are chosen from the Cook-Baumgarte equal-mass ISCO configuration. We show waveforms of the dominant l=2,3 modes and compute estimates of energy and angular momentum radiated. For the plunges from the close separations considered, we measure kick velocities from gravitational radiation recoil in the range 25-82 km/s. Due to the initial close separations our kick velocity estimates should be understood as a lower bound. The close configurations considered are also likely to contain significant eccentricities influencing the recoil velocity.Comment: 12 pages, 5 figures, to appear in "New Frontiers" special issue of CQ

    Superkicks in Hyperbolic Encounters of Binary Black Holes

    Full text link
    Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as well as on the dynamics of the binary configuration. Studies have focused so far on the most astrophysically relevant configuration of quasi-circular inspirals, for which kicks as large as 3,300 km/s have been found. We present the first study of gravitational recoil in hyperbolic encounters. Contrary to quasi-circular configurations, in which the beamed radiation tends to average during the inspiral, radiation from hyperbolic encounters is plunge dominated, resulting in an enhancement of preferential beaming. As a consequence, it is possible to achieve kick velocities as large as 10,000 km/s.Comment: 4 pages, 5 figures, 1 tabl

    Numerical simulations with a first order BSSN formulation of Einstein's field equations

    Get PDF
    We present a new fully first order strongly hyperbolic representation of the BSSN formulation of Einstein's equations with optional constraint damping terms. We describe the characteristic fields of the system, discuss its hyperbolicity properties, and present two numerical implementations and simulations: one using finite differences, adaptive mesh refinement and in particular binary black holes, and another one using the discontinuous Galerkin method in spherical symmetry. The results of this paper constitute a first step in an effort to combine the robustness of BSSN evolutions with very high accuracy numerical techniques, such as spectral collocation multi-domain or discontinuous Galerkin methods.Comment: To appear in Physical Review

    Reduced basis catalogs for gravitational wave templates

    Get PDF
    We introduce a reduced basis approach as a new paradigm for modeling, representing and searching for gravitational waves. We construct waveform catalogs for non-spinning compact binary coalescences, and we find that for accuracies of 99% and 99.999% the method generates a factor of about 1010510-10^5 fewer templates than standard placement methods. The continuum of gravitational waves can be represented by a finite and comparatively compact basis. The method is robust under variations in the noise of detectors, implying that only a single catalog needs to be generated.Comment: Minor changes in some of the phrasing to match the version as published in PR

    Binary black hole evolutions of approximate puncture initial data

    Full text link
    Approximate solutions to the Einstein field equations are a valuable tool to investigate gravitational phenomena. An important aspect of any approximation is to investigate and quantify its regime of validity. We present a study that evaluates the effects that approximate puncture initial data, based on "skeleton" solutions to the Einstein constraints as proposed by Faye et al. [PRD 69, 124029 (2004)], have on numerical evolutions. Using data analysis tools, we assess the effectiveness of these constraint-violating initial data and show that the matches of waveforms from skeleton data with the corresponding waveforms from constraint-satisfying initial data are > 0.97 when the total mass of the binary is > 40M(solar). In addition, we demonstrate that the differences between the skeleton and the constraint-satisfying initial data evolutions, and thus waveforms, are due to negative Hamiltonian constraint violations present in the skeleton initial data located in the vicinity of the punctures. During the evolution, the skeleton data develops both Hamiltonian and momentum constraint violations that decay with time, with the binary system relaxing to a constraint-satisfying solution with black holes of smaller mass and thus different dynamics
    corecore