64 research outputs found

    Collective dipole effects in ionic transport under electric fields

    Get PDF
    In the context of ionic transport in solids, the variation of a migration barrier height under electric fields is traditionally assumed to be equal to the classical electric work of a point charge that carries the transport charge. However, how reliable is this phenomenological model and how does it fare with respect to Modern Theory of Polarization? In this work, we show that such a classical picture does not hold in general as collective dipole effects may be critical. Such effects are unraveled by an appropriate polarization decomposition and by an expression that we derive, which defines the equivalent polarization-work charge. The equivalent polarization-work charge is not equal neither to the transported charge, nor to the Born effective charge of the migrating atom alone, but it is defined by the total polarization change at the transition state. Our findings are illustrated by oxygen charged defects in MgO and in SiO2

    Mass Spectrometric Mapping of the DNA Adductome as a Means to Study Genotoxin Exposure, Metabolism, and Effect.

    Get PDF
    Covalent binding of endo- or exogenous chemicals to DNA results in the formation of DNA adducts which are reflective of exposure of the human body to DNA-damaging molecules and their metabolic pathways. The study of DNA adduct types and levels in human tissue therefore offers an interesting tool in several fields of research, including toxicology and cancer epidemiology. Over the years, a range of techniques and methods have been developed to study the formation of endo- and exogenous DNA adducts. However, for the simultaneous detection, identification and quantification of both known and unknown DNA adducts, mass spectrometry (MS) is deemed to be the most promising technique. In this perspective, we focus on the analysis of multiple DNA adducts within a sample with the emphasis on untargeted analysis. The advantageous use of MS methodologies for DNA adductome mapping is discussed comprehensively with relevant field examples. In addition, several aspects of study design, sample pretreatment, and analysis are addressed as these factors significantly affect the reliability of DNA adductomics studies

    Tailoring Adjuvant Endocrine Therapy for Postmenopausal Breast Cancer: A CYP2D6 Multiple-Genotype-Based Modeling Analysis and Validation

    Get PDF
    Purpose: Previous studies have suggested that postmenopausal women with breast cancer who present with wild-type CYP2D6 may actually have similar or superior recurrence-free survival outcomes when given tamoxifen in place of aromatase inhibitors (AIs). The present study established a CYP2D6 multiple-genotype-based model to determine the optimal endocrine therapy for patients harboring wild-type CYP2D6. Methods: We created a Markov model to determine whether tamoxifen or AIs maximized 5-year disease-free survival (DFS) for extensive metabolizer (EM) patients using annual hazard ratio (HR) data from the BIG 1-98 trial. We then replicated the model by evaluating 9-year event-free survival (EFS) using HR data from the ATAC trial. In addition, we employed two-way sensitivity analyses to explore the impact of HR of decreased-metabolizer (DM) and its frequency on survival by studying a range of estimates. Results: The 5-year DFS of tamoxifen-treated EM patients was 83.3%, which is similar to that of genotypically unselected patients who received an AI (83.7%). In the validation study, we further demonstrated that the 9-year EFS of tamoxifentreated EM patients was 81.4%, which is higher than that of genotypically unselected patients receiving tamoxifen (78.4%) and similar to that of patients receiving an AI (83.2%). Two-way sensitivity analyses demonstrated the robustness of the results

    The preclinical pharmacology of the high affinity anti-IL-6R Nanobody (R) ALX-0061 supports its clinical development in rheumatoid arthritis

    Get PDF
    Introduction: The pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody (R) with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology. Methods: ALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control. Results: ALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration. Conclusions: ALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA

    Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials

    Full text link

    Antidepressants, metoprolol and the risk of bradycardia

    No full text
    • 

    corecore