575 research outputs found

    Unraveling the drivers of regional variation in healthcare spending by analyzing prevalent chronic diseases.

    Get PDF
    To indicate inefficiencies in health systems, previous studies examined regional variation in healthcare spending by analyzing the entire population. As a result, population heterogeneity is taken into account to a limited extent only. Furthermore, it clouds a detailed interpretation which could be used to inform regional budget allocation decisions to improve quality of care of one chronic disease over another. Therefore, we aimed to gain insight into the drivers of regional variation in healthcare spending by studying prevalent chronic diseases

    Metabolic homeostasis in chronic helminth infection is sustained by organ-specific metabolic rewiring

    Get PDF
    Opisthorchiasis, is a hepatobiliary disease caused by flukes of the trematode family Opisthorchiidae. A chronic form of the disease implies a prolonged coexistence of a host and the parasite. The pathological changes inflicted by the worm to the host’s hepatobiliary system are well documented. Yet, the response to the infection also triggers a deep remodeling of the host systemic metabolism reaching a new homeostasis and affecting the organs beyond the worm location. Understanding the metabolic alternation in chronic opisthorchiasis, could help us to pinpoint pathways that underlie infection opening possibilities for the development of more selective treatment strategies. Here, with this report we apply an integrative, multicompartment metabolomics analysis, using multiple biofluids, stool samples and tissue extracts to describe metabolic changes in Opisthorchis felineus infected animals at the chronic stage. We show that the shift in lipid metabolism in the serum, a depletion of the amino acids pool, an alteration of the ketogenic pathways in the jejunum and a suppressed metabolic activity of the spleen are the key features of the metabolic host adaptation at the chronic stage of O. felineus infection. We describe this combination of the metabolic changes as a “metabolically mediated immunosuppressive status of organism” which develops during a chronic infection. This status in combination with other factors (e.g., parasite-derived immunomodulators) might increase risk of infection-related malignancy

    COPD-derived fibroblasts secrete higher levels of senescence-associated secretory phenotype proteins.

    Full text link
    COPD-derived fibroblasts have increased cellular senescence. Senescent cell accumulation can induce tissue dysfunction by their senescence-associated secretory phenotype (SASP). We aimed to determine the SASP of senescent fibroblasts and COPD-derived lung fibroblasts, including severe, early-onset (SEO)-COPD. SASP protein secretion was measured after paraquat-induced senescence in lung fibroblasts using Olink Proteomics and compared between (SEO-)COPD-derived and control-derived fibroblasts. We identified 124 SASP proteins of senescent lung fibroblasts, of which 42 were secreted at higher levels by COPD-derived fibroblasts and 35 by SEO-COPD-derived fibroblasts compared with controls. Interestingly, the (SEO-)COPD-associated SASP included proteins involved in chronic inflammation, which may contribute to (SEO-)COPD pathogenesis

    Epithelial cell dysfunction, a major driver of asthma development

    Get PDF
    Airway epithelial barrier dysfunction is frequently observed in asthma and may have important implications. The physical barrier function of the airway epithelium is tightly interwoven with its immunomodulatory actions, while abnormal epithelial repair responses may contribute to remodelling of the airway wall. We propose that abnormalities in the airway epithelial barrier play a crucial role in the sensitization to allergens and pathogenesis of asthma. Many of the identified susceptibility genes for asthma are expressed in the airway epithelium, supporting the notion that events at the airway epithelial surface are critical for the development of the disease. However, the exact mechanisms by which the expression of epithelial susceptibility genes translates into a functionally altered response to environmental risk factors of asthma are still unknown. Interactions between genetic factors and epigenetic regulatory mechanisms may be crucial for asthma susceptibility. Understanding these mechanisms may lead to identification of novel targets for asthma intervention by targeting the airway epithelium. Moreover, exciting new insights have come from recent studies using single-cell RNA sequencing (scRNA-Seq) to study the airway epithelium in asthma. This review focuses on the role of airway epithelial barrier function in the susceptibility to develop asthma and novel insights in the modulation of epithelial cell dysfunction in asthma

    A Protective Role of FAM13A in Human Airway Epithelial Cells Upon Exposure to Cigarette Smoke Extract

    Get PDF
    BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disease characterized by chronic inflammation upon inhalation of noxious particles, e.g., cigarette smoke. FAM13A is one of the genes often found to be associated with COPD, however its function in the pathophysiology of COPD is incompletely understood. We studied its role in airway epithelial barrier integrity and cigarette smoke-induced epithelial responses. MATERIALS AND METHODS: Protein level and localization of FAM13A was assessed with immunohistochemistry in lung tissue from COPD patients and non-COPD controls. In vitro, FAM13A expression was determined in the absence or presence of cigarette smoke extract (CSE) in primary airway epithelial cells (AECs) from COPD patients and controls by western blotting. FAM13A was overexpressed in cell line 16HBE14o- and its effect on barrier function was monitored real-time by electrical resistance. Expression of junctional protein E-cadherin and β-catenin was assessed by western blotting. The secretion of neutrophil attractant CXCL8 upon CSE exposure was measured by ELISA. RESULTS: FAM13A was strongly expressed in airway epithelium, but significantly weaker in airways of COPD patients compared to non-COPD controls. In COPD-derived AECs, but not those of controls, FAM13A was significantly downregulated by CSE. 16HBE14o- cells overexpressing FAM13A built up epithelial resistance significantly more rapidly, which was accompanied by higher E-cadherin expression and reduced CSE-induced CXCL8 levels. CONCLUSION: Our data indicate that the expression of FAM13A is lower in airway epithelium of COPD patients compared to non-COPD controls. In addition, cigarette smoking selectively downregulates airway epithelial expression of FAM13A in COPD patients. This may have important consequences for the pathophysiology of COPD, as the more rapid build-up of epithelial resistance upon FAM13A overexpression suggests improved (re)constitution of barrier function. The reduced epithelial secretion of CXCL8 upon CSE-induced damage suggests that lower FAM13A expression upon cigarette smoking may facilitate epithelial-driven neutrophilia

    Dysregulated cross-talk between alveolar epithelial cells and stromal cells in idiopathic pulmonary fibrosis reduces epithelial regenerative capacity

    Get PDF
    In idiopathic pulmonary fibrosis (IPF) constant epithelial micro-injury and aberrant interactions within the stromal micro-environment lead to abnormal alveolar repair and fibrosis. We hypothesized that alveolar epithelial regenerative responses in IPF are impaired due to disturbed crosstalk between epithelial cells and their stromal niche. We established organoid cultures from unfractionated suspensions and isolated EpCAM+ cells from distal lung tissue of patients with and without IPF. We observed significantly more organoids being formed from unfractionated suspensions compared to isolated EpCAM+ cell cultures, indicating the presence of supportive cells in the unfractionated suspensions. Importantly, lower organoid numbers were observed in unfractionated cultures from IPF lungs compared to non-IPF lungs. This difference was not found when comparing organoid formation from isolated EpCAM+ cells alone between IPF and non-IPF groups, suggesting that crosstalk between the supportive population and epithelial cells is impaired in lungs from IPF patients. Additionally, organoids grown from IPF lung-derived cells were larger in size compared to those from non-IPF lungs in both unfractionated and EpCAM+ cultures, indicating an intrinsic abnormality in epithelial progenitors from IPF lungs. Together, our observations suggest that dysregulated crosstalk between alveolar progenitor cells and the stromal niche affects the regenerative capacity, potentially contributing to alveolar impairment in IPF

    Inhibition of beta-Catenin/CREB Binding Protein Signaling Attenuates House Dust Mite-Induced Goblet Cell Metaplasia in Mice

    Get PDF
    Excessive mucus production is a major feature of allergic asthma. Disruption of epithelial junctions by allergens such as house dust mite (HDM) results in the activation of β-catenin signaling, which has been reported to stimulate goblet cell differentiation. β-catenin interacts with various co-activators including CREB binding protein (CBP) and p300, thereby regulating the expression of genes involved in cell proliferation and differentiation, respectively. We specifically investigated the role of the β-catenin/CBP signaling pathway in goblet cell metaplasia in a HDM-induced allergic airway disease model in mice using ICG-001, a small molecule inhibitor that blocks the binding of CBP to β-catenin. Female 6- 8-week-old BALB/c mice were sensitized to HDM/saline on days 0, 1, and 2, followed by intranasal challenge with HDM/saline with or without subcutaneous ICG-001/vehicle treatment from days 14 to 17, and samples harvested 24 h after the last challenge/treatment. Differential inflammatory cells in bronchoalveolar lavage (BAL) fluid were enumerated. Alcian blue (AB)/Periodic acid–Schiff (PAS) staining was used to identify goblet cells/mucus production, and airway hyperresponsiveness (AHR) was assessed using invasive plethysmography. Exposure to HDM induced airway inflammation, goblet cell metaplasia and increased AHR, with increased airway resistance in response to the non-specific spasmogen methacholine. Inhibition of the β-catenin/CBP pathway using treatment with ICG-001 significantly attenuated the HDM-induced goblet cell metaplasia and infiltration of macrophages, but had no effect on eosinophils, neutrophils, lymphocytes or AHR. Increased β-catenin/CBP signaling may promote HDM-induced goblet cell metaplasia in mice

    ERS International Congress, Madrid, 2019: highlights from the Basic and Translational Science Assembly.

    Full text link
    In this review, the Basic and Translational Sciences Assembly of the European Respiratory Society (ERS) provides an overview of the 2019 ERS International Congress highlights. In particular, we discuss how the novel and very promising technology of single cell sequencing has led to the development of a comprehensive map of the human lung, the lung cell atlas, including the discovery of novel cell types and new insights into cellular trajectories in lung health and disease. Further, we summarise recent insights in the field of respiratory infections, which can aid in a better understanding of the molecular mechanisms underlying these infections in order to develop novel vaccines and improved treatment options. Novel concepts delineating the early origins of lung disease are focused on the effects of pre- and post-natal exposures on neonatal lung development and long-term lung health. Moreover, we discuss how these early life exposures can affect the lung microbiome and respiratory infections. In addition, the importance of metabolomics and mitochondrial function analysis to subphenotype chronic lung disease patients according to their metabolic program is described. Finally, basic and translational respiratory science is rapidly moving forward and this will be beneficial for an advanced molecular understanding of the mechanisms underlying a variety of lung diseases. In the long-term this will aid in the development of novel therapeutic targeting strategies in the field of respiratory medicine
    corecore