1,770 research outputs found
Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires
We present numerical calculations of the ballistic spin-transport properties
of quasi-one-dimensional wires in the presence of the spin-orbit (Rashba)
interaction. A tight-binding analog of the Rashba Hamiltonian which models the
Rashba effect is used. By varying the robustness of the Rashba coupling and the
width of the wire, weak and strong coupling regimes are identified. Perfect
electron spin-modulation is found for the former regime, regardless of the
incident Fermi energy and mode number. In the latter however, the
spin-conductance has a strong energy dependence due to a nontrivial subband
intermixing induced by the strong Rashba coupling. This would imply a strong
suppression of the spin-modulation at higher temperatures and source-drain
voltages. The results may be of relevance for the implementation of
quasi-one-dimensional spin transistor devices.Comment: 19 pages (incl. 9 figures). To be published in PR
Critical properties of S=1/2 Heisenberg ladders in magnetic fields
The critical properties of the Heisenberg two-leg ladders are
investigated in a magnetic field. Combining the exact diagonalization method
and the finite-size-scaling analysis based on conformal field theory, we
calculate the critical exponents of spin correlation functions numerically. For
a strong interchain coupling, magnetization dependence of the critical
exponents shows characteristic behavior depending on the sign of the interchain
coupling. We also calculate the critical exponents for the Heisenberg
two-leg ladder with a diagonal interaction, which is thought as a model
Hamiltonian of the organic spin ladder compound
. Numerical results are compared with
experimental results of temperature dependence of the NMR relaxation rate
.Comment: REVTeX, 10 pages, 8 figures, accepted for Phys. Rev.
Observation of Field-Induced Transverse N\'{e}el Ordering in the Spin Gap System TlCuCl
Neutron elastic scattering experiments have been performed on the spin gap
system TlCuCl in magnetic fields parallel to the -axis. The magnetic
Bragg peaks which indicate the field-induced N\'{e}el ordering were observed
for magnetic field higher than the gap field T at with odd in the plane. The spin structure in the ordered
phase was determined. The temperature and field dependence of the Bragg peak
intensities and the phase boundary obtained were discussed in connection with a
recent theory which describes the field-induced N\'{e}el ordering as a
Bose-Einstein condensation of magnons.Comment: 4 pages, 5 eps figures, jpsj styl
Neutron Scattering Study of Magnetic Ordering and Excitations in the Doped Spin Gap System Tl(CuMg)Cl
Neutron elastic and inelastic scattering measurements have been performed in
order to investigate the spin structure and the magnetic excitations in the
impurity-induced antiferromagnetic ordered phase of the doped spin gap system
Tl(CuMg)Cl with . The magnetic Bragg reflections
indicative of the ordering were observed at with integer
and odd below K. It was found that the spin structure
of the impurity-induced antiferromagnetic ordered phase on average in
Tl(CuMg)Cl with is the same as that of the
field-induced magnetic ordered phase for in the parent
compound TlCuCl. The triplet magnetic excitation was clearly observed in
the - plane and the dispersion relations of the triplet excitation
were determined along four different directions. The lowest triplet excitation
corresponding to the spin gap was observed at with integer
and odd , as observed in TlCuCl. It was also found that the spin gap
increases steeply below upon decreasing temperature. This strongly
indicates that the impurity-induced antiferromagnetic ordering coexists with
the spin gap state in Tl(CuMg)Cl with .Comment: 24 pages, 7 figures, 11 eps files, revtex style, will appear in Phys.
Rev.
Revisiting the Problem of Searching on a Line
We revisit the problem of searching for a target at an unknown location on a
line when given upper and lower bounds on the distance D that separates the
initial position of the searcher from the target. Prior to this work, only
asymptotic bounds were known for the optimal competitive ratio achievable by
any search strategy in the worst case. We present the first tight bounds on the
exact optimal competitive ratio achievable, parameterized in terms of the given
bounds on D, along with an optimal search strategy that achieves this
competitive ratio. We prove that this optimal strategy is unique. We
characterize the conditions under which an optimal strategy can be computed
exactly and, when it cannot, we explain how numerical methods can be used
efficiently. In addition, we answer several related open questions, including
the maximal reach problem, and we discuss how to generalize these results to m
rays, for any m >= 2
Theoretical analysis of the experiments on the double-spin-chain compound -- KCuCl
We have analyzed the experimental susceptibility data of KCuCl and found
that the data are well-explained by the double-spin-chain models with strong
antiferromagnetic dimerization. Large quantum Monte Carlo calculations were
performed for the first time in the spin systems with frustration. This was
made possible by removing the negative-sign problem with the use of the dimer
basis that has the spin-reversal symmetry. The numerical data agree with the
experimental data within 1% relative errors in the whole temperature region. We
also present a theoretical estimate for the dispersion relation and compare it
with the recent neutron-scattering experiment. Finally, the magnitude of each
interaction bond is predicted.Comment: 4 pages, REVTeX, 5 figures in eps-file
Mesoscopic Stern-Gerlach device to polarize spin currents
Spin preparation and spin detection are fundamental problems in spintronics
and in several solid state proposals for quantum information processing. Here
we propose the mesoscopic equivalent of an optical polarizing beam splitter
(PBS). This interferometric device uses non-dispersive phases (Aharonov-Bohm
and Rashba) in order to separate spin up and spin down carriers into distinct
outputs and thus it is analogous to a Stern-Gerlach apparatus. It can be used
both as a spin preparation device and as a spin measuring device by converting
spin into charge (orbital) degrees of freedom. An important feature of the
proposed spin polarizer is that no ferromagnetic contacts are used.Comment: Updated to the published versio
Diffuse transport and spin accumulation in a Rashba two-dimensional electron gas
The Rashba Hamiltonian describes the splitting of the conduction band as a
result of spin-orbit coupling in the presence of an asymmetric confinement
potential and is commonly used to model the electronic structure of confined
narrow-gap semiconductors. Due to the mixing of spin states some care has to be
exercised in the calculation of transport properties. We derive the diffusive
conductance tensor for a disordered two-dimensional electron gas with
spin-orbit interaction and show that the applied bias induces a spin
accumulation, but that the electric current is not spin-polarized.Comment: REVTeX4 format, 5 page
Spin Hall effect transistor
Spin transistors and spin Hall effects have been two separate leading
directions of research in semiconductor spintronics which seeks new paradigms
for information processing technologies. We have brought the two directions
together to realize an all-semiconductor spin Hall effect transistor. Our
scheme circumvents semiconductor-ferromagnet interface problems of the original
Datta-Das spin transistor concept and demonstrates the utility of the spin Hall
effects in microelectronics. The devices use diffusive transport and operate
without electrical current, i.e., without Joule heating in the active part of
the transistor. We demonstrate a spin AND logic function in a semiconductor
channel with two gates. Our experimental study is complemented by numerical
Monte Carlo simulations of spin-diffusion through the transistor channel.Comment: 11 pages, 3 figure
Quasiparticles governing the zero-temperature dynamics of the 1D spin-1/2 Heisenberg antiferromagnet in a magnetic field
The T=0 dynamical properties of the one-dimensional (1D)
Heisenberg antiferromagnet in a uniform magnetic field are studied via Bethe
ansatz for cyclic chains of sites. The ground state at magnetization
, which can be interpreted as a state with spinons or as a
state of magnons, is reconfigured here as the vacuum for a different
species of quasiparticles, the {\em psinons} and {\em antipsinons}. We
investigate three kinds of quantum fluctuations, namely the spin fluctuations
parallel and perpendicular to the direction of the applied magnetic field and
the dimer fluctuations. The dynamically dominant excitation spectra are found
to be sets of collective excitations composed of two quasiparticles excited
from the psinon vacuum in different configurations. The Bethe ansatz provides a
framework for (i) the characterization of the new quasiparticles in relation to
the more familiar spinons and magnons, (ii) the calculation of spectral
boundaries and densities of states for each continuum, (iii) the calculation of
transition rates between the ground state and the dynamically dominant
collective excitations, (iv) the prediction of lineshapes for dynamic structure
factors relevant for experiments performed on a variety of quasi-1D
antiferromagnetic compounds, including KCuF,
Cu(CHN, and CuGeO.Comment: 13 pages, 12 figure
- …
