11,543 research outputs found

    Quantum Gravity and Black Hole Dynamics in 1+1 Dimensions

    Full text link
    We study the quantum theory of 1+1 dimensional dilaton gravity, which is an interesting toy model of the black hole dynamics. The functional measures are explicitly evaluated and the physical state conditions corresponding to the Hamiltonian and the momentum constraints are derived. It is pointed out that the constraints form the Virasoro algebra without central charge. In ADM formalism the measures are very ambiguous, but in our formalism they are explicitly defined. Then the new features which are not seen in ADM formalism come out. A singularity appears at \df^2 =\kappa (>0) , where κ=(N51/2)/12\kappa =(N-51/2)/12 and N N is the number of matter fields. Behind the singularity the quantum mechanical region \kappa > \df^2 >0 extends, where the sign of the kinetic term in the Hamiltonian constraint changes. If κ<0\kappa <0 , the singularity disappears. We discuss the quantum dynamics of black hole and then give a suggestion for the resolution of the information loss paradox. We also argue the quantization of the spherically symmetric gravitational system in 3+1 dimensions. In appendix the differences between the other quantum dilaton gravities and ours are clarified and our status is stressed.Comment: phyztex, UT-Komaba 92-14. A few misleading sentences are corrected and some references are adde

    On the dynamics of vortex modes within magnetic islands

    Full text link
    Recent work investigating the interaction of magnetic islands with micro-turbulence has uncovered the striking observation of large scale vortex modes forming within the island structure [W.A. Hornsby {\it et al.}, Phys. Plasmas {\bf 17} 092301 (2010)]. These electrostatic vortices are found to be the size of the island and are oscillatory. It is this oscillatory behaviour and the presence of turbulence that leads us to believe that the dynamics are related to the Geodesic Acoustic Mode (GAM), and it is this link that is investigated in this paper. Here we derive an equation for the GAM in the MHD limit, in the presence of a magnetic island modified three-dimensional axisymmetric geometry. The eigenvalues and eigenfunctions are calculated numerically and then utilised to analyse the dynamics of oscillatory large-scale electrostatic potential structures seen in both linear and non-linear gyro-kinetic simulations

    The Heart of Faith in Graham Greene’s The Heart of the Matter

    Full text link
    There is no question that Graham Greene's The Heart of the Matter is a work that tackles religious faith views. Through the principal character, Major Scobie, Greene tries to show his own concept of true faith. Major Scobie, the police commissioner is put in the divine-earthly balance equation and is left alone to lead up his way. This paper is an attempt to piece together Graham Greene's ideas around the truth of faith. The strategy adopted in the paper is to follow Major Scobie's words and actions and to put them in the scale of Christian dogma to weigh their truth. At last, the paper presents the results it attained in the conclusion. It concludes that there is a deal of hypocrisy or self-deception built in the principal character, Major Scobie that extends from the beginning to the end of the novel that affects the truth of faith

    Making a Universe

    Get PDF
    For understanding the origin of anisotropies in the cosmic microwave background, rules to construct a quantized universe is proposed based on the dynamical triangulation method of the simplicial quantum gravity. A dd-dimensional universe having the topology Dd D^d is created numerically in terms of a simplicial manifold with dd-simplices as the building blocks. The space coordinates of a universe are identified on the boundary surface Sd1 S^{d-1} , and the time coordinate is defined along the direction perpendicular to Sd1 S^{d-1} . Numerical simulations are made mainly for 2-dimensional universes, and analyzed to examine appropriateness of the construction rules by comparing to analytic results of the matrix model and the Liouville theory. Furthermore, a simulation in 4-dimension is made, and the result suggests an ability to analyze the observations on anisotropies by comparing to the scalar curvature correlation of a S2 S^2 -surface formed as the last scattering surface in the S3 S^3 universe.Comment: 27pages,18figures,using jpsj.st

    Space-Time and Matter in IIB Matrix Model - gauge symmetry and diffeomorphism -

    Get PDF
    We pursue the study of the type IIB matrix model as a constructive definition of superstring. In this paper, we justify the interpretation of space-time as distribution of eigenvalues of the matrices by showing that some low energy excitations indeed propagate in it. In particular, we show that if the distribution consists of small clusters of size nn, low energy theory acquires local SU(n) gauge symmetry and a plaquette action for the associated gauge boson is induced, in addition to a gauge invariant kinetic term for a massless fermion in the adjoint representation of the SU(n). We finally argue a possible identification of the diffeomorphism symmetry with permutation group acting on the set of eigenvalues, and show that the general covariance is realized in the low energy effective theory even though we do not have a manifest general covariance in the IIB matrix model action.Comment: 25 page

    Efecto del cambio climático sobre problemas fitosanitarios en caña de azúcar, maní y algodón: un abordaje binacional.

    Get PDF
    La roya marrón y la roya anaranjada de la caña de azúcar, la viruela tardía del maní y el picudo del algodonero son problemas fitosanitarios actuales y potenciales para estos cultivos industriales tanto en Argentina como en Brasil. En Argentina no se han realizado estudios sobre el efecto del cambio climático en cultivos que ocupan actualmente áreas bien definidas, con perspectivas de expandirse a otras áreas agroecológicas, generando flujos de patógenos y plagas en macroregiones abarcando ambos países. Para ello se elaboró un proyecto interinstitucional entre INTA y EMBRAPA cuyo objetivo principal es evaluar el impacto del cambio climático sobre enfermedades y plagas de cultivos de importancia para la agroindustria de Argentina y Brasil, intentando el desarrollo de alternativas de adaptación para su control en los escenarios climáticos futuros. La investigación y discusión en red entre Argentina y Brasil es una oportunidad indispensable para evitar esfuerzos innecesarios, integrando los resultados obtenidos con los diferentes cultivos de importancia para la agroindustria

    Intestinal neuromuscular function after preservation and transplantation

    Get PDF
    While it is well known that prolonged preservation of the intestinal graft causes severe mucosal damage after transplantation, little is known about the effect on neuromuscular function. The entire small intestine of adult hound dogs was flushed and preserved with cold lactated Ringer's solution and autotransplanted either immediately (n = 6) or after 24 hr (n = 6). Animals undergoing sham operation (n = 4) were used as a control. Fasting motility and the response of the intestinal smooth muscle and enteric nerves to bethanechol (100 μg/kg/0.5 hr, iv) and cisapride (0.5 mg/kg, iv) were determined by a multiple strain gauge method on Postoperative Days 2, 4, 7, 14, 21, and 28. Compared to the control, immediately transplanted grafts and those preserved for 24 hr developed delayed reappearance of migrating myoelectric complexes (MMC), hypercontractile activity, and reduced response to bethanechol and cisapride administration. Animals in the preservation group developed more abnormal fasting motility after transplantation, but responses to bethanechol and cisapride stimulation were not markedly different from those of the immediate group. The reappearance of MMC occurred 3 weeks postoperatively in the preservation group compared to 2 days in the immediate group. The results of our study indicate that intestinal dysmotility is augmented in prolonged-preservation grafts compared to those with brief preservation. The dysmotility was transient and normalized 3 to 4 weeks after surgery. Preservation and reperfusion injury to the neuromuscular system of intestinal grafts are reversible and are attenuated by simple hypothermia

    Vertex Operators in 4D Quantum Gravity Formulated as CFT

    Full text link
    We study vertex operators in 4D conformal field theory derived from quantized gravity, whose dynamics is governed by the Wess-Zumino action by Riegert and the Weyl action. Conformal symmetry is equal to diffeomorphism symmetry in the ultraviolet limit, which mixes positive-metric and negative-metric modes of the gravitational field and thus these modes cannot be treated separately in physical operators. In this paper, we construct gravitational vertex operators such as the Ricci scalar, defined as space-time volume integrals of them are invariant under conformal transformations. Short distance singularities of these operator products are computed and it is shown that their coefficients have physically correct sign. Furthermore, we show that conformal algebra holds even in the system perturbed by the cosmological constant vertex operator as in the case of the Liouville theory shown by Curtright and Thorn.Comment: 26 pages, rewrote review part concisely, added explanation

    Role of covalency in the ground state properties of perovskite ruthenates: A first principle study using local spin density approximations

    Get PDF
    We investigate the electronic structure of SrRuO3 and CaRuO3 using full potential linearized augmented plane wave method within the local spin density approximations. The ferromagnetic ground state in SrRuO3 could exactly be described in these calculations and the calculated spin magnetic moment is found to be close to the experimentally observed values. Interestingly, the spin polarized calculations for CaRuO3 exhibit large spin moment as observed in the experiments but the magnetic ground state has higher energy than that in the non-magnetic solution. Various calculations for different structural configurations indicate that Ca-O covalency plays the key role in determining the electronic structure and thereby the magnetic ground state in this system.Comment: 8 figure

    RNA secondary structure prediction from multi-aligned sequences

    Full text link
    It has been well accepted that the RNA secondary structures of most functional non-coding RNAs (ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of conserved secondary structures from evolutionarily related sequences is one important task in RNA bioinformatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve the accuracy of secondary structure predictions and to find novel functional RNAs from the genome. In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in which one secondary structure whose length is equal to that of the input alignment is predicted. I systematically review and classify existing tools and algorithms for the problem, by utilizing the information employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG) estimators. I believe that this classification will allow a deeper understanding of each tool and provide users with useful information for selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in a chapter of the book `Methods in Molecular Biology'. Note that this version of the manuscript may differ from the published versio
    corecore