39 research outputs found

    RNA Sequencing of Human Peripheral Nerve in Response to Injury: Distinctive Analysis of the Nerve Repair Pathways

    Get PDF
    The development of regenerative therapies for central nervous system diseases can likely benefit from an understanding of the peripheral nervous system repair process, particularly in identifying potential gene pathways involved in human nerve repair. This study employed RNA sequencing (RNA-seq) technology to analyze the whole transcriptome profile of the human peripheral nerve in response to an injury. The distal sural nerve was exposed, completely transected, and a 1 to 2 cm section of nerve fascicles was collected for RNA-seq from six participants with Parkinson\u27s disease, ranging in age between 53 and 70 yr. Two weeks after the initial injury, another section of the nerve fascicles of the distal and pre-degenerated stump of the nerve was dissected and processed for RNA-seq studies. An initial analysis between the pre-lesion status and the postinjury gene expression revealed 3,641 genes that were significantly differentially expressed. In addition, the results support a clear transdifferentiation process that occurred by the end of the 2-wk postinjury. Gene ontology (GO) and hierarchical clustering were used to identify the major signaling pathways affected by the injury. In contrast to previous nonclinical studies, important changes were observed in molecular pathways related to antiapoptotic signaling, neurotrophic factor processes, cell motility, and immune cell chemotactic signaling. The results of our current study provide new insights regarding the essential interactions of different molecular pathways that drive neuronal repair and axonal regeneration in humans

    Regulation of Liver Regeneration by Hepatocyte O-GlcNAcylation in Mice

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Background & Aims The liver has a unique capacity to regenerate after injury in a highly orchestrated and regulated manner. Here, we report that O-GlcNAcylation, an intracellular post-translational modification regulated by 2 enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a critical termination signal for liver regeneration following partial hepatectomy (PHX). Methods We studied liver regeneration after PHX on hepatocyte specific OGT and OGA knockout mice (OGT-KO and OGA-KO), which caused a significant decrease (OGT-KO) and increase (OGA-KO) in hepatic O-GlcNAcylation, respectively. Results OGA-KO mice had normal regeneration, but the OGT-KO mice exhibited substantial defects in termination of liver regeneration with increased liver injury, sustained cell proliferation resulting in significant hepatomegaly, hepatic dysplasia, and appearance of small nodules at 28 days after PHX. This was accompanied by a sustained increase in expression of cyclins along with significant induction in pro-inflammatory and pro-fibrotic gene expression in the OGT-KO livers. RNA-sequencing studies revealed inactivation of hepatocyte nuclear 4 alpha (HNF4α), the master regulator of hepatic differentiation and a known termination signal, in OGT-KO mice at 28 days after PHX, which was confirmed by both Western blot and immunohistochemistry analysis. Furthermore, a significant decrease in HNFα target genes was observed in OGT-KO mice, indicating a lack of hepatocyte differentiation following decreased hepatic O-GlcNAcylation. Immunoprecipitation experiments revealed HNF4α is O-GlcNAcylated in normal differentiated hepatocytes. Conclusions These studies show that O-GlcNAcylation plays a critical role in the termination of liver regeneration via regulation of HNF4α in hepatocytes

    The mechanism of disaster capitalism and the failure to build community resilience:learning from the 2009 earthquake in L'Aquila, Italy

    Get PDF
    This paper reflects on what materialised during recovery operations following the earthquake in L'Aquila, Italy, on 6 April 2009. Previous critiques have focused on the actions of the Government of Italy and the Department of Civil Protection (Protezione Civile), with little attention paid to the role of local authorities. This analysis sheds light on how the latter used emergency powers, the command-and-control approach, and top-down planning to manage the disaster context, especially in terms of removal of rubble, implementing safety measures, and allocating temporary accommodation. It discusses how these arrangements constituted the mechanism via which ‘disaster capitalism’ took hold at the local and national level, and how it violated human rights, produced environmental and social impacts, hindered local communities from learning, transforming, and building resilience, and facilitated disaster capitalism and corruption. To make the disaster risk reduction and resilience paradigm more effective, a shift from centralised civil protection to decentralised, inclusive community empowerment systems is needed

    The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is the direct cause of approximately one million deaths worldwide each year, though it is both preventable and curable. Increasing the understanding of the transmission dynamics of falciparum and vivax malaria and their relationship could suggest improvements for malaria control efforts. Here the weekly number of malaria cases due to <it>Plasmodium falciparum </it>(1994–2006) and <it>Plasmodium vivax </it>(1999–2006) in Perú at different spatial scales in conjunction with associated demographic, geographic and climatological data are analysed.</p> <p>Methods</p> <p>Malaria periodicity patterns were analysed through wavelet spectral analysis, studied patterns of persistence as a function of community size and assessed spatial heterogeneity via the Lorenz curve and the summary Gini index.</p> <p>Results</p> <p>Wavelet time series analyses identified annual cycles in the incidence of both malaria species as the dominant pattern. However, significant spatial heterogeneity was observed across jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for <it>P. vivax </it>than <it>P. falciparum</it>. While the incidence of <it>P. falciparum </it>has been declining in recent years across geographic regions, <it>P. vivax </it>incidence has remained relatively steady in jungle and mountain regions with a slight decline in coastal regions. Factors that may be contributing to this decline are discussed. The time series of both malaria species were significantly synchronized in coastal (ρ = 0.9, P < 0.0001) and jungle regions (ρ = 0.76, P < 0.0001) but not in mountain regions. Community size was significantly associated with malaria persistence due to both species in jungle regions, but not in coastal and mountain regions.</p> <p>Conclusion</p> <p>Overall, findings highlight the importance of highly refined spatial and temporal data on malaria incidence together with demographic and geographic information in improving the understanding of malaria persistence patterns associated with multiple malaria species in human populations, impact of interventions, detection of heterogeneity and generation of hypotheses.</p

    Estimating the Global Clinical Burden of Plasmodium falciparum Malaria in 2007

    Get PDF
    Simon Hay and colleagues derive contemporary estimates of the global clinical burden of Plasmodium falciparum malaria (the deadliest form of malaria) using cartography-based techniques

    Computational Tools for Identifying Functional Regions in Biological Sequences

    No full text
    Automated biological sequence annotation is a rapidly developing field. The need for computational tools to facilitate this exercise is of stark necessity given the rate at which new genetic sequences are being accumulated. This dissertation introduces new approaches to two fundamental problems in contemporary bioinformatics, and their synergic integration. They are described in two parts: In Part I, we introduce a novel approach based on templates to differentiate between transcription factor binding sites and non-binding sites. Templates model three key discriminatory features, sequence homology, structural homology and nucleotide polymorphisms present in various degrees in different transcription factor binding sites. We show how templates can be adopted to predict the actual binding affinity of a given binding site based on the distribution of binding affinities of a set of training sites. We also present examples demonstrating the excellen-t discriminative and predictive capabilities of templates for transcription factor binding sites. In Part II, we introduce a new framework for sequence alignment. Here, information is seen as information units that act upon the sequences being aligned rather than an intrinsic part of the sequences themselves. The result is a versatile alignment tool, a tool that can dynamically incorporate knowledge on demand to a sequence alignment. We describe efficient data structures that form an integral part of such alignment tool. The described data structures are efficient in terms of both storage and retrieval of information. We illustrate a hybrid alignment strategy geared towards accommodating the diversity of information available on the sequences being aligned. The alignment algorithms described are optimised over a combination of both the alignment of individual residue pairs and the alignment of sequence segments. We present examples demonstrating the versatility of the described alignment framework and the high quality of alignments that it produces.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Genomic, Clinical, and Behavioral Characterization of 15q11.2 BP1-BP2 Deletion (Burnside-Butler) Syndrome in Five Families

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.The 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome is emerging as the most common cytogenetic finding in patients with neurodevelopmental or autism spectrum disorders (ASD) presenting for microarray genetic testing. Clinical findings in Burnside-Butler syndrome include developmental and motor delays, congenital abnormalities, learning and behavioral problems, and abnormal brain findings. To better define symptom presentation, we performed comprehensive cognitive and behavioral testing, collected medical and family histories, and conducted clinical genetic evaluations. The 15q11.2 BP1-BP2 region includes the TUBGCP5, CYFIP1, NIPA1, and NIPA2 genes. To determine if additional genomic variation outside of the 15q11.2 region influences expression of symptoms in Burnside-Butler syndrome, whole-exome sequencing was performed on the parents and affected children for the first time in five families with at least one parent and child with the 15q1l.2 BP1-BP2 deletion. In total, there were 453 genes with possibly damaging variants identified across all of the affected children. Of these, 99 genes had exclusively de novo variants and 107 had variants inherited exclusively from the parent without the deletion. There were three genes (APBB1, GOLGA2, and MEOX1) with de novo variants that encode proteins evidenced to interact with CYFIP1. In addition, one other gene of interest (FAT3) had variants inherited from the parent without the deletion and encoded a protein interacting with CYFIP1. The affected individuals commonly displayed a neurodevelopmental phenotype including ASD, speech delay, abnormal reflexes, and coordination issues along with craniofacial findings and orthopedic-related connective tissue problems. Of the 453 genes with variants, 35 were associated with ASD. On average, each affected child had variants in 6 distinct ASD-associated genes (x¯ = 6.33, sd = 3.01). In addition, 32 genes with variants were included on clinical testing panels from Clinical Laboratory Improvement Amendments (CLIA) approved and accredited commercial laboratories reflecting other observed phenotypes. Notably, the dataset analyzed in this study was small and reported results will require validation in larger samples as well as functional follow-up. Regardless, we anticipate that results from our study will inform future research into the genetic factors influencing diverse symptoms in patients with Burnside-Butler syndrome, an emerging disorder with a neurodevelopmental behavioral phenotype

    A high force of Plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in Papua New Guinean children

    Get PDF
    When both parasite species are co-endemic, Plasmodium vivax incidence peaks in younger children compared to P. falciparum. To identify differences in the number of blood stage infections of these species and its potential link to acquisition of immunity, we have estimated the molecular force of blood-stage infection of P. vivax (molFOB, i.e. the number of genetically distinct blood-stage infections over time), and compared it to previously reported values for P. falciparum.; P. vivax molFOB was estimated by high resolution genotyping parasites in samples collected over 16 months in a cohort of 264 Papua New Guinean children living in an area highly endemic for P. falciparum and P. vivax. In this cohort, P. vivax episodes decreased three-fold over the age range of 1-4.5 years.; On average, children acquired 14.0 new P. vivax blood-stage clones/child/year-at-risk. While the incidence of clinical P. vivax illness was strongly associated with mol FOB (incidence rate ratio (IRR) = 1.99, 95% confidence interval (CI95) [1.80, 2.19]), molFOB did not change with age. The incidence of P. vivax showed a faster decrease with age in children with high (IRR = 0.49, CI95 [0.38, 0.64] p>0.001) compared to those with low exposure (IRR = 0.63, CI95[0.43, 0.93] p = 0.02).; P. vivax molFOB is considerably higher than P. falciparum molFOB (5.5 clones/child/year-at-risk). The high number of P. vivax clones that infect children in early childhood contribute to the rapid acquisition of immunity against clinical P. vivax malaria
    corecore