6,069 research outputs found

    Experimental evaluation of outer planets probe thermal insulation concepts

    Get PDF
    An experimental program was conducted to evaluate various thermal insulation concepts for use in the Outer Planets Probe (OPP) during entry and descent into the atmospheres of Jupiter, Saturn, and Uranus. Phenolic fiberglass honeycomb specimens representative of the OPP structure were packed and tested with various fillers: Thermal conductivity measurements were made over a temperature range of 300 K to 483 K and pressures from vacuum up to 10 atmospheres in helium and nitrogen gas environments. The conductivity results could not be fully explained so new test specimens were designed with improved venting characteristics, and tested to determine the validity of the original data. All of the conductivity data showed results that were substantially higher than expected. The original test data in helium were lower than the data from the redesigned specimens, probably due to inadequate venting of nitrogen gas from the original specimens. The thermal conductivity test results show only a marginal improvement in probe thermal protection performance for a filled honeycomb core compared to an unfilled core. In addition, flatwise tension tests showed a severe bond strength degradation due to the inclusion of either the powder or foam fillers. In view of these results, it is recommended that the baseline OPP design utilize an unfilled core

    Outer planets probe testing

    Get PDF
    An atmospheric entry Probe is being developed by NASA Ames Research Center (ARC) to conduct in situ scientific investigations of the outer planets' atmospheres. A full scale engineering model of an MDAC-E Probe configuration, was fabricated by NASA ARC. Proof-of-concept test validation of the structural and thermal design is being obtained at NASA ARC. The model was successfully tested for shock and dynamic loading and is currently in thermal vacuum testing

    Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds using All-Optical Charge Readout

    Full text link
    Nanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile platform for sensing applications spanning from nanomagnetism to in-vivo monitoring of cellular processes. In many cases, however, weak optical signals and poor contrast demand long acquisition times that prevent the measurement of environmental dynamics. Here, we demonstrate the ability to perform fast, high-contrast optical measurements of charge distributions in ensembles of NV centers in nanodiamonds and use the technique to improve the spin readout signal-to-noise ratio through spin-to-charge conversion. A study of 38 nanodiamonds, each hosting 10-15 NV centers with an average diameter of 40 nm, uncovers complex, multiple-timescale dynamics due to radiative and non-radiative ionization and recombination processes. Nonetheless, the nanodiamonds universally exhibit charge-dependent photoluminescence contrasts and the potential for enhanced spin readout using spin-to-charge conversion. We use the technique to speed up a T1T_1 relaxometry measurement by a factor of five.Comment: 13 pages, 14 figure

    Fabrication of (111)-Faced Single-Crystal Diamond Plates by Laser Nucleated Cleaving

    Full text link
    Single-crystal diamond plates with surfaces oriented in a (111) crystal plane are required for high-performance solid-state device platforms ranging from power electronics to quantum information processing architectures. However, producing plates with this orientation has proven challenging. In this paper, we demonstrate a method for reliably and precisely fabricating (111)-faced plates from commercially available, chemical-vapor-deposition-grown, type-IIa single-crystal diamond substrates with (100) faces. Our method uses a nanosecond-pulsed visible laser to nucleate and propagate a mechanical cleave in a chosen (111) crystal plane, resulting in faces as large as 3.0 mm×\times0.3 mm with atomically flat surfaces, negligible miscut angles, and near zero kerf loss. We discuss the underlying physical mechanisms of the process along with potential improvements that will enable the production of millimeter-scale (111)-faced single-crystal diamond plates for a variety of emerging devices and applications.Comment: 11 pages, 10 figures, 2 table

    In Search of a Fair Bet in the Lottery

    Get PDF
    Although state-operated lotto games have the worst average expected payoffs among common games of chance, because the jackpot can accumulate, the maximum expected payoff is potentially unlimited. It is possible, therefore, that lotto can exhibit a positive expected return. This paper examines 18,000 drawings in 34 American lotteries and finds approximately 1 percent of these drawings provided players with a fair bet. If it were possible for a bettor to purchase every possible combination, however, most lotteries commonly experience circumstances where such a purchase would provide a positive return with 11 percent of the drawings providing a fair bet to the player.

    Performance of a 1200m long suspended Fabry-Perot cavity

    Full text link
    Using one arm of the Michelson interferometer and the power recycling mirror of the interferometric gravitational wave detector GEO600, we created a Fabry-Perot cavity with a length of 1200 m. The main purpose of this experiment was to gather first experience with the main optics, its suspensions and the corresponding control systems. The residual displacement of a main mirror is about 150 nm rms. By stabilising the length of the 1200 m long cavity to the pre-stabilised laser beam we achieved an error point frequency noise of 0.1 mHz/sqrt(Hz) at 100 Hz Fourier frequency. In addition we demonstrated the reliable performance of all included subsystems by several 10-hour-periods of continuous stable operation. Thus the full frequency stabilisation scheme for GEO600 was successfully tested.Comment: Amaldi 4 (Perth 2001) conference proceedings, 10 pages, 8 figure

    Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride

    Full text link
    Hexagonal boron nitride (h-BN) is a tantalizing material for solid-state quantum engineering. Analogously to three-dimensional wide-bandgap semiconductors like diamond, h-BN hosts isolated defects exhibiting visible fluorescence, and the ability to position such quantum emitters within a two-dimensional material promises breakthrough advances in quantum sensing, photonics, and other quantum technologies. Critical to such applications, however, is an understanding of the physics underlying h-BN's quantum emission. We report the creation and characterization of visible single-photon sources in suspended, single-crystal, h-BN films. The emitters are bright and stable over timescales of several months in ambient conditions. With substrate interactions eliminated, we study the spectral, temporal, and spatial characteristics of the defects' optical emission, which offer several clues about their electronic and chemical structure. Analysis of the defects' spectra reveals similarities in vibronic coupling despite widely-varying fluorescence wavelengths, and a statistical analysis of their polarized emission patterns indicates a correlation between the optical dipole orientations of some defects and the primitive crystallographic axes of the single-crystal h-BN film. These measurements constrain possible defect models, and, moreover, suggest that several classes of emitters can exist simultaneously in free-standing h-BN, whether they be different defects, different charge states of the same defect, or the result of strong local perturbations
    corecore