811 research outputs found

    A machine-learning derived model of seafloor sediment accumulation

    Get PDF
    Abstract Previous studies regarding the depositional pattern and quantity of accumulated seafloor sediment tend to be regional, limited in scope and involving costly and time-consuming geologic field campaigns and laboratory work. Presented herein is a global map of predicted modern (postindustrial, 20th and 21st century) oceanic mass accumulation rates of 5-arc-minute pitch and in log10-space, trained on observed marine mass accumulation rates from 43 peer reviewed sources (n = 1744) and predicted using a k-nearest neighbor geospatial algorithm. The resultant model predicts ~3.3 × 104 Mt. yr−1 of sediment accumulating onto the sea floor (R2 = 0.88). Most sediment accumulates proximal to major river outlets and deltas. Continental regions with the highest sediment accumulation are Asia and Oceania. This model is the first of its kind to predict the rate and quantity of sediment accumulating on to the ocean floor, globally, using decades of regional real-world observations. The generated global map of modern, benthic mass accumulation rates also serves to highlight areas of interest for future study in related fields, such as sediment dynamics and seafloor stability

    Large Animal Models for Simulating Physiology of Transfusion of Red Cell Concentrates—A Scoping Review of The Literature

    Get PDF
    Background and Objectives: Transfusion of red cell concentrates is a key component of medical therapy. To investigate the complex transfusion-associated biochemical and physiological processes as well as potential risks for human recipients, animal models are of particular importance. This scoping review summarizes existing large animal transfusion models for their ability to model the physiology associated with the storage of erythrocyte concentrates. Materials and Methods: The electronic databases PubMed, EMBASE, and Web of Science were systematically searched for original studies providing information on the intravenous application of erythrocyte concentrates in porcine, ovine, and canine animal models. Results: A total of 36 studies were included in the analysis. The majority of porcine studies evaluated hemorrhagic shock conditions. Pig models showed high physiological similarities with regard to red cell physiology during early storage. Ovine and canine studies were found to model typical aspects of human red cell storage at 42 days. Only four studies provided data on 24 h in vivo survival of red cells. Conclusions: While ovine and canine models can mimic typical human erythrocyte storage for up to 42 days, porcine models stand out for reliably simulating double-hit pathologies such as hemorrhagic shock. Large animal models remain an important area of translational research since they have an impact on testing new pharmacological or biophysical interventions to attenuate storage-related adverse effects and allow, in a controlled environment, to study background and interventions in dynamic and severe disease conditions

    0+ states and collective bands in 228Th studied by the (p,t) reaction

    Full text link
    The excitation spectra in the deformed nucleus 228Th have been studied by means of the (p,t)-reaction, using the Q3D spectrograph facility at the Munich Tandem accelerator. The angular distributions of tritons were measured for about 110 excitations seen in the triton spectra up to 2.5 MeV. Firm 0+ assignments are made for 17 excited states by comparison of experimental angular distributions with the calculated ones using the CHUCK3 code. Assignments up to spin 6+ are made for other states. Sequences of states are selected which can be treated as rotational bands and as multiplets of excitations. Moments of inertia have been derived from these sequences, whose values may be considered as evidence of the two-phonon nature of most 0+ excitations. Experimental data are compared with interacting boson model and quasiparticle-phonon model calculations and with experimental data for 229Pa.Comment: 21 pages, 14 figure

    Electron-Phonon Coupling Origin of the resistivity in YNi_{2}B_{2}C Single Crystals

    Full text link
    Resistivity measurements from 4.2 K up to 300 K were made on YNi_{2}B_{2}C single crystals with Tc=15.5 K. The resulting rho(T) curve shows a perfect Bloch-Grueneisen (BG) behavior, with a very small residual resistivity which indicates the low impurity content and the high cristallographic quality of the samples. The value lambda_{tr}=0.53 for the transport electron-phonon coupling constant was obtained by using the high-temperature constant value of d(rho)/dT and the plasma frequency reported in literature. The BG expression for the phononic part of the resistivity rho_{ph}(T) was then used to fit the data in the whole temperature range, by approximating alpha^{2}_{tr}F(Omega) with the experimental phonon spectral density G(Omega) multiplied by a two-step weighting function to be determined by the fit. The resulting fitting curve perfectly agrees with the experimental points. We also solved the real-axis Eliashberg equations in both s- and d-wave symmetries under the approximation alpha^{2}F(Omega)= alpha^{2}_{tr}F(Omega). We found that the value of lambda_{tr} here determined in single-band approximation is quite compatible with Tc and the gap Delta experimentally observed. Finally, we calculated the normalized tunneling conductance, whose comparison with break-junction tunnel data gives indication of the possible s-wave symmetry for the order parameter in YNi_{2}B_{2}C.Comment: 6 pages, 5 figures. Proceedings of SATT10 Conference, to be published in Int. J. Mod. Phys.
    corecore