894 research outputs found

    K-Shell Photoabsorption Studies of the Carbon Isonuclear Sequence

    Full text link
    K-shell photoabsorption cross sections for the isonuclear C I - C IV ions have been computed using the R-matrix method. Above the K-shell threshold, the present results are in good agreement with the independent-particle results of Reilman & Manson (1979). Below threshold, we also compute the strong 1s -> np absorption resonances with the inclusion of important spectator Auger broadening effects. For the lowest 1s -> 2p, 3p resonances, comparisons to available C II, C III, and C IV experimental results show good agreement in general for the resonance strengths and positions, but unexplained discrepancies exist. Our results also provide detailed information on the C I K-shell photoabsorption cross section including the strong resonance features, since very limited laboratory experimental data exist. The resultant R-matrix cross sections are then used to model the Chandra X-ray absorption spectrum of the blazar Mkn 421

    Interplay between pairing and correlations in spin-polarized bound states

    Get PDF
    We investigate the single and multiple defects embedded in a superconducting host, studying interplay between the proximity induced pairing and interactions. We explore influence of the spin-orbit coupling on energies, polarization and spatial patterns of the bound (Yu-Shiba-Rusinov) states of magnetic impurities in 2-dimensional square lattice. We also address the peculiar bound states in the proximitized Rashba chain, resembling the Majorana quasiparticles, focusing on their magnetic polarization which has been recently reported by S. Jeon et al., [Science 358, 772 (2017)]. Finally, we study leakage of these polarized Majorana quasiparticles on the side-attached nanoscopic regions and confront them with the subgap Kondo effect near to the singlet-doublet phase transition.Comment: 10 pages, 9 figure

    Dielectronic Recombination (via N=2 --> N'=2 Core Excitations) and Radiative Recombination of Fe XX: Laboratory Measurements and Theoretical Calculations

    Get PDF
    We have measured the resonance strengths and energies for dielectronic recombination (DR) of Fe XX forming Fe XIX via N=2 --> N'=2 (Delta_N=0) core excitations. We have also calculated the DR resonance strengths and energies using AUTOSTRUCTURE, HULLAC, MCDF, and R-matrix methods, four different state-of-the-art theoretical techniques. On average the theoretical resonance strengths agree to within <~10% with experiment. However, the 1 sigma standard deviation for the ratios of the theoretical-to-experimental resonance strengths is >~30% which is significantly larger than the estimated relative experimental uncertainty of <~10%. This suggests that similar errors exist in the calculated level populations and line emission spectrum of the recombined ion. We confirm that theoretical methods based on inverse-photoionization calculations (e.g., undamped R-matrix methods) will severely overestimate the strength of the DR process unless they include the effects of radiation damping. We also find that the coupling between the DR and radiative recombination (RR) channels is small. We have used our experimental and theoretical results to produce Maxwellian-averaged rate coefficients for Delta_N=0 DR of Fe XX. For kT>~1 eV, which includes the predicted formation temperatures for Fe XX in an optically thin, low-density photoionized plasma with cosmic abundances, our experimental and theoretical results are in good agreement. We have also used our R-matrix results, topped off using AUTOSTRUCTURE for RR into J>=25 levels, to calculate the rate coefficient for RR of Fe XX. Our RR results are in good agreement with previously published calculations.Comment: To be published in ApJS. 65 pages with 4 tables and lots of figure

    Hofstadter butterfly for a finite correlated system

    Full text link
    We investigate a finite two-dimensional system in the presence of external magnetic field. We discuss how the energy spectrum depends on the system size, boundary conditions and Coulomb repulsion. On one hand, using these results we present the field dependence of the transport properties of a nanosystem. In particular, we demonstrate that these properties depend on whether the system consists of even or odd number of sites. On the other hand, on the basis of exact results obtained for a finite system we investigate whether the Hofstadter butterfly is robust against strong electronic correlations. We show that for sufficiently strong Coulomb repulsion the Hubbard gap decreases when the magnetic field increases.Comment: 7 pages, 5 figures, revte

    Dielectronic Recombination of Ground-State and Metastable Li+ Ions

    Get PDF
    Dielectronic recombination has been investigated for Delta-n = 1 resonances of ground-state Li+(1s^2) and for Delta-n = 0 resonances of metastable Li+(1s2s ^3S). The ground-state spectrum shows three prominent transitions between 53 and 64 eV, while the metastable spectrum exhibits many transitions with energies < 3.2 eV. Reasonably good agreement of R-matrix, LS coupling calculations with the measured recombination rate coefficient is obtained. The time dependence of the recombination rate yields a radiative lifetime of 52.2 +- 5.0 s for the 2 ^3S level of Li+.Comment: Submitted to Phys. Rev. A; REVTeX, 4 pages, 3 figure

    A Comprehensive X-ray Absorption Model for Atomic Oxygen

    Get PDF
    An analytical formula is developed to represent accurately the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling. In the vicinity of the Kedge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models

    Radiation Damping in the Photoionization of Fe^{14+}

    Get PDF
    A theoretical investigation of photoabsorption and photoionization of Fe^{14+} extending beyond an earlier frame transformation R-matrix implementation is performed using a fully-correlated, Breit-Pauli R-matrix formulation including both fine-structure splitting of strongly-bound resonances and radiation damping. The radiation damping of 2pnd2p\rightarrow nd resonances gives rise to a resonant photoionization cross section that is significantly lower than the total photoabsorption cross section. Furthermore, the radiation-damped photoionization cross section is found to be in good agreement with recent experimental results once a global shift in energy of 3.5\approx -3.5 eV is applied. These findings have important implications. Firstly, the presently available synchrotron experimental data are applicable only to photoionization processes and not to photoabsorption; the latter is required in opacity calculations. Secondly, our computed cross section, for which the L-shell ionization threshold is aligned with the NIST value, shows a series of 2pnd2p \rightarrow nd Rydberg resonances that are uniformly 3-4 eV higher in energy than the corresponding experimental profiles, indicating that the L-shell threshold energy values currently recommended by NIST are likely in error.Comment: 4 pages, 1 figures, and 2 table

    Dielectronic recombination data for dynamic finite-density plasmas : XIV. The aluminium isoelectronic sequence

    Get PDF
    Context. A comprehensive study of dielectronic recombination (DR) for the aluminum-like isoelectronic sequence has been completed. Aims. Total and final-state resolved DR rate coefficients for the ground and metastable initial levels of 17 ions between Si ii and Zn xviii are presented. Methods. Within an isolated-resonance, distorted-wave (IPIRDW) approximation, multiconfiguration Breit-Pauli (MCBP) calculations are carried out for the total and partial DR rate coefficients of Al-like ions. Both Δnc = 0 and Δnc = 1 core-excitations are included, using LS-coupled and intermediate-coupling (IC) schemes. Results. The inaccuracies of earlier empirical data and/or LS-coupling calculations, particularly at lower temperatures characteristic of photoionized plasmas, is demonstrated by comparison with present, state-of-the-art IC DR rate coefficients. Fine-structure effects are found to increase the DR rate coefficient at low temperatures and decrease it at high temperatures, rendering earlier LS calculations incomplete. Good agreement is found between present IC results and experimental measurements
    corecore