37 research outputs found
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido
The fundamental tradeoff in genomes and proteomes of prokaryotes established by the genetic code, codon entropy, and physics of nucleic acids and proteins
10.1186/s13062-014-0029-2Biology direct92
Exploring the evolution of protein function in Archaea
10.1186/1471-2148-12-75BMC Evolutionary Biology1217
Trajectories of microsecond molecular dynamics simulations of nucleosomes and nucleosome core particles
We present here raw trajectories of molecular dynamics simulations for nucleosome with linker DNA strands as well as minimalistic nucleosome core particle model. The simulations were done in explicit solvent using CHARMM36 force field. We used this data in the research article Shaytan et al., 2016 [1]. The trajectory files are supplemented by TCL scripts providing advanced visualization capabilities. Keywords: Molecular dynamics, Nucleosome, Linker DNA, Histone, Histone tail
MethylToSNP : identifying SNPs in Illumina DNA methylation array data
BACKGROUND : Current array-based methods for the measurement of DNA methylation rely on the process of sodium
bisulfite conversion to differentiate between methylated and unmethylated cytosine bases in DNA. In the absence
of genotype data this process can lead to ambiguity in data interpretation when a sample has polymorphisms at a
methylation probe site. A common way to minimize this problem is to exclude such potentially problematic sites,
with some methods removing as much as 60% of array probes from consideration before data analysis.
RESULTS: Here, we present an algorithm implemented in an R Bioconductor package, MethylToSNP, which detects
a characteristic data pattern to infer sites likely to be confounded by polymorphisms. Additionally, the tool provides
a stringent reliability score to allow thresholding on SNP predictions. We calibrated parameters and thresholds used
by the algorithm on simulated and real methylation data sets. We illustrate findings using methylation data from YRI
(Yoruba in Ibadan, Nigeria), CEPH (European descent) and KhoeSan (southern African) populations. Our polymorphism
predictions made using MethylToSNP have been validated through SNP databases and bisulfite and genomic
sequencing.
CONCLUSIONS : The benefits of this method are threefold. First, it prevents extensive data loss by considering only SNPs
specific to the individuals in the study. Second, it offers the possibility to identify new polymorphisms in samples for
which there is little known about the genetic landscape. Third, it identifies variants as they exist in functional regions
of a genome, such as in CTCF (transcriptional repressor) sites and enhancers, that may be common alleles or personal
mutations with potential to deleteriously affect genomic regulatory activities. We demonstrate that MethylToSNP is
applicable to the Illumina 450K and Illumina 850K EPIC array data and is also backwards compatible to the 27K methylation
arrays. Going forward, this kind of nuanced approach can increase the amount of information derived from
precious data sets by considering samples of the project individually to enable more informed decisions about data cleaning.Additional file 1. Supplemental Methods. Additional materials are
provided for the determination of default thresholds (Figure. S1), assessment
of false negative rates (Figure. S2), and inverse quantile weighting
(Figure. S3).Intramural Program of the National Human Genome Research Institute
to LE (Grant No. 1ZIAHG200323-14). This work was also supported by an
Australian Research Council (ARC) Discovery Project Grant awarded to VMH
(DP170103071) and sampling contributed by the Cancer Association of South
Africa (CANSA) to MSRB and VMH. VMH is supported by the University of
Sydney Foundation in a Petre Foundation chair position.https://epigeneticsandchromatin.biomedcentral.comam2020School of Health Systems and Public Health (SHSPH
The Regional Student Group Program of the ISCB Student Council: Stories from the Road
The International Society for Computational Biology (ISCB) Student Council was launched in 2004 to facilitate interaction between young scientists in the fields of bioinformatics and computational biology. Since then, the Student Council has successfully run events and programs to promote the development of the next generation of computational biologists. However, in its early years, the Student Council faced a major challenge, in that students from different geographical regions had different needs; no single activity or event could address the needs of all students. To overcome this challenge, the Student Council created the Regional Student Group (RSG) program. The program consists of locally organised and run student groups that address the specific needs of students in their region. These groups usually encompass a given country, and, via affiliation with the international Student Council, are provided with financial support, organisational support, and the ability to share information with other RSGs. In the last five years, RSGs have been created all over the world and organised activities that have helped develop dynamic bioinformatics student communities. In this article series, we present common themes emerging from RSG initiatives, explain their goals, and highlight the challenges and rewards through specific examples. This article, the first in the series, introduces the Student Council and provides a high-level overview of RSG activities. Our hope is that the article series will be a valuable source of information and inspiration for initiating similar activities in other regions and scientific communities
DNA methylation profiles unique to Kalahari KhoeSan individuals
Genomes of KhoeSan individuals of the Kalahari Desert provide the greatest understanding of single
nucleotide diversity in the human genome. Compared with individuals in industrialized environments,
the KhoeSan have a unique foraging and hunting lifestyle. Given these dramatic environmental
differences, and the responsiveness of the methylome to environmental exposures of many types, we
hypothesized that DNA methylation patterns would differ between KhoeSan and neighbouring agropastoral and/or industrial Bantu. We analysed Illumina HumanMethylation 450 k array data generated
from blood samples from 38 KhoeSan and 42 Bantu, and 6 Europeans. After removing CpG positions
associated with annotated and novel polymorphisms and controlling for white blood cell composition,
sex, age and technical variation we identified 816 differentially methylated CpG loci, out of which 133
had an absolute beta-value difference of at least 0.05. Notably SLC39A4/ZIP4, which plays a role in zinc
transport, was one of the most differentially methylated loci. Although the chronological ages of the
KhoeSan are not formally recorded, we compared historically estimated ages to methylation-based
calculations. This study demonstrates that the epigenetic profile of KhoeSan individuals reveals differences from other populations, and along with extensive genetic diversity, this community brings
increased accessibility and understanding to the diversity of the human genome.Intramural Program of the National Human Genome Research Institute;
Australian Research Council Discovery Project grant (DP170103071);
Cancer Association of South Africa.http://www.landesbioscience.com/journals/epigeneticspm2021School of Health Systems and Public Health (SHSPH
Simple yet functional phosphate-loop proteins.
Abundant and essential motifs, such as phosphate-binding loops (P-loops), are presumed to be the seeds of modern enzymes. The Walker-A P-loop is absolutely essential in modern NTPase enzymes, in mediating binding, and transfer of the terminal phosphate groups of NTPs. However, NTPase function depends on many additional active-site residues placed throughout the protein's scaffold. Can motifs such as P-loops confer function in a simpler context? We applied a phylogenetic analysis that yielded a sequence logo of the putative ancestral Walker-A P-loop element: a β-strand connected to an α-helix via the P-loop. Computational design incorporated this element into de novo designed β-α repeat proteins with relatively few sequence modifications. We obtained soluble, stable proteins that unlike modern P-loop NTPases bound ATP in a magnesium-independent manner. Foremost, these simple P-loop proteins avidly bound polynucleotides, RNA, and single-strand DNA, and mutations in the P-loop's key residues abolished binding. Binding appears to be facilitated by the structural plasticity of these proteins, including quaternary structure polymorphism that promotes a combined action of multiple P-loops. Accordingly, oligomerization enabled a 55-aa protein carrying a single P-loop to confer avid polynucleotide binding. Overall, our results show that the P-loop Walker-A motif can be implemented in small and simple β-α repeat proteins, primarily as a polynucleotide binding motif