9 research outputs found

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Oscillation Physics with a Neutrino Factory

    Get PDF
    A generation of neutrino experiments have established that neutrinos mix and probably have mass. The mixing phenomenon points to processes beyond those of the Standard Model, possibly at the Grand Unification energy scale. A extensive sequence of of experiments will be required to measure precisely all the parameters of the neutrino mixing matrix, culminating with the discovery and study of leptonic CP violation. As a first step, extensions of conventional pion/kaon decay beams, such as off-axis beams or low-energy super-beams, have been considered. These could yield first observations of νμ→νe\nu_\mu \to \nu_e transitions at the atmospheric frequency, which have not yet been observed, and a first measurement of θ13\theta_{13}. Experiments with much better flux control can be envisaged if the neutrinos are obtained from the decays of stored particles. One such possibility is the concept of beta beams provided by the decays of radioactive nuclei, that has been developed within the context of these studies. These would provide a pure (anti-)electron-neutrino beam of a few hundred MeV, and beautiful complementarity with a high-intensity, low-energy conventional beam, enabling experimental probes of T violation as well as CP violation. Ultimately, a definitive and complete set of measurements would offered by a Neutrino Factory based on a muon storage ring. This powerful machine offers the largest reach for CP violation, even for very small values of θ13\theta_{13}

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects

    Get PDF
    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF

    Get PDF
    A description of the proposed detector(s) for DUNE at LBN

    Crop Plant Hormones and Environmental Stress

    No full text

    Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment

    No full text

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF

    Get PDF
    A description of the proposed detector(s) for DUNE at LBN

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    No full text
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
    corecore