35 research outputs found

    The combination of exercise training and Zataria multiflora supplementation increase serum irisin levels in postmenopausal women

    Get PDF
    Background:We examined the effect of antioxidant supplementation and exercise on irisin within postmenopausal women.Methods:Forty-eight participants (age: 55.7 ± 4.9 years; weight: 68.0 ± 6.3 kg; BMI 27.0 ± 2.7; mean ± SD) were randomized into four groups for the eight week intervention: control group (CG; n = 12), resistance training group (RTG; n = 12), supplementation with Zataria multiflora group (ZG; n = 12), or supplementation with Z. multiflora and resistance training group (ZRTG; n = 12). RTG and ZRTG performed circuit resistance training, and both ZG and ZRTG consumed 500 mg of Z. multifloraevery day during the intervention. Blood samples were taken 48 hours before and after the intervention.Results:There was a significant difference in irisin at post-training, with greater levels in ZRTG compared to CG. A significant increase was noted for irisin at post-training compared to pre-training for ZG, RTG, and ZRTG. Moreover, we identified a significant decrease in malondialdehyde in the RTG and ZRTG groups and increase in glutathione in the ZG, RTG, and ZRTG groups when compared to CG.Conclusion:These findings showed that exercise, Z. multiflora supplementation or their combination led to an increase in irisin

    mRNA structure determines specificity of a polyQ-driven phase separation

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of American Association for the Advancement of Science for personal use, not for redistribution. The definitive version was published in American Association for the Advancement of Science 360 (2018): 922-927, doi:10.1126/science.aar7432.RNA promotes liquid-liquid phase separation (LLPS) to build membrane-less compartments in cells. How distinct molecular compositions are established and maintained in these liquid compartments is unknown. Here we report that secondary structure allows mRNAs to self-associate and determines if an mRNA is recruited to or excluded from liquid compartments. The polyQ-protein Whi3 induces conformational changes in RNA structure and generates distinct molecular fluctuations depending on the RNA sequence. These data support a model in which structure-based, RNA-RNA interactions promote assembly of distinct droplets and protein-driven, conformational dynamics of the RNA maintain this identity. Thus, the shape of RNA can promote the formation and coexistence of the diverse array of RNA-rich liquid compartments found in a single cell.This work was supported by NIH GM R01- GM081506, the HHMI Faculty Scholars program, R35 GM122532, ACS 130845-RSG-17-114- 01-RMC, NIH 1DP2 GM105453, and NIH R01 GM115631
    corecore