79 research outputs found

    Ageism and sexuality

    Get PDF
    Sexuality remains important throughout a person’s life, but sexual behavior does not receive the same levels of acceptance at all ages. Older people are challenged by ageist attitudes and perceptions that hinder their sexual expression. They are stereotyped as non-sexual beings who should not, cannot, and do not want to have sexual relationships. Expressing sexuality or engaging in sexual activity in later life is considered by many in society as immoral or perverted. False expectations for older people also stem from ideals of beauty, centralization of the biomedical perspective on sexuality of older adults, and the association of sex with reproduction. Unfortunately, older people internalize many ageist attitudes towards sexuality in later life and become less interested in sex and less sexually active. The following chapter explores attitudes towards sexuality in later life among the media, young people, older people themselves, and care providers. In order to enable older people to express their sexuality and sexual identity freely and fully, awareness of ageist perceptions must be raised and defeated

    Modelling diverse root density dynamics and deep nitrogen uptake — a simple approach

    Get PDF
    We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters

    Bifidobacterium Infantis 35624 Protects Against Salmonella-Induced Reductions in Digestive Enzyme Activity in Mice by Attenuation of the Host Inflammatory Response

    Get PDF
    OBJECTIVES: Salmonella-induced damage to the small intestine may decrease the villi-associated enzyme activity, causing malabsorption of nutrients and diarrhea, and thus contribute to the symptoms of infection. The objective of this study was to determine the mechanism by which different doses and durations of Salmonella infection and lipopolysaccharide (LPS) affect brush border enzyme activity in the mouse, and to determine if the probiotic Bifidobacterium longum subspecies infantis 35624 could attenuate the intestinal damage. METHODS: BALB/c mice were challenged with Salmonella enterica serovar Typhimurium UK1 at various doses (10(2)-10(8) colony-forming unit (CFU)) and durations (10(6) CFU for 1-6 days). Mice were also treated with B. longum subsp. infantis 35624 for 2 weeks before and during a 6-day S. Typhimurium challenge (10(6) CFU), or before injection of LPS. The small intestine was assessed for morphological changes, mRNA expression of cytokines, and activity of the brush border enzymes sucrase-isomaltase, maltase, and alkaline phosphatase. RESULTS: S. Typhimurium infection significantly reduced the activity of all brush border enzymes in a dose- and time-dependent manner (P<0.05). This also occurred following injection of LPS. Pre-treatment with B. longum subsp. infantis 35624 prevented weight loss, protected brush border enzyme activity, reduced the small intestinal damage, and inhibited the increase in interleukin (IL)-10 and IL-8 expression due to Salmonella challenge. CONCLUSIONS: Salmonella infection reduces the small intestinal brush border enzyme activity in mice, with the level of reduction and associated weight loss increasing with dose and duration of infection. B. longum subsp. infantis 35624 treatment attenuated the effect of Salmonella infection on brush border enzyme activity and weight loss, which may be due to modulation of the host immune response

    Caspase-dependent and -independent suppression of apoptosis by monoHER in Doxorubicin treated cells

    Get PDF
    Doxorubicin (DOX) is an antitumour agent for different types of cancer, but the dose-related cardiotoxicity limits its clinical use. To prevent this side effect we have developed the flavonoid monohydroxyethylrutoside (monoHER), a promising protective agent, which did not interfere with the antitumour activity of DOX. To obtain more insight in the mechanism underlying the selective protective effects of monoHER, we investigated whether monoHER (1 mM) affects DOX-induced apoptosis in neonatal rat cardiac myocytes (NeRCaMs), human endothelial cells (HUVECs) and the ovarian cancer cell lines A2780 and OVCAR-3. DOX-induced cell death was effectively reduced by monoHER in heart, endothelial and A2780 cells. OVCAR-3 cells were highly resistant to DOX-induced apoptosis. Experiments with the caspase-inhibitor zVAD-fmk showed that DOX-induced apoptosis was caspase-dependent in HUVECs and A2780 cells, whereas caspase-independent mechanisms seem to be important in NeRCaMs. MonoHER suppressed DOX-dependent activation of the mitochondrial apoptotic pathway in normal and A2780 cells as illustrated by p53 accumulation and activation of caspase-9 and -3 cleavage. Thus, monoHER acts by suppressing the activation of molecular mechanisms that mediate either caspase-dependent or -independent cell death. In light of the current work and our previous studies, the use of clinically achievable concentrations of monoHER has no influence on the antitumour activity of DOX whereas higher concentrations as used in the present study could influence the antitumour activity of DOX
    • …
    corecore