9,320 research outputs found
Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique
A common issue encountered in photoemission electron sources used in electron
accelerators is the transverse inhomogeneity of the laser distribution
resulting from the laser-amplification process and often use of frequency up
conversion in nonlinear crystals. A inhomogeneous laser distribution on the
photocathode produces charged beams with lower beam quality. In this paper, we
explore the possible use of microlens arrays (fly-eye light condensers) to
dramatically improve the transverse uniformity of the drive laser pulse on UV
photocathodes. We also demonstrate the use of such microlens arrays to generate
transversely-modulated electron beams and present a possible application to
diagnose the properties of a magnetized beam.Comment: arXiv admin note: text overlap with arXiv:1609.0166
Mass of Clusters in Simulations
We show that dark matter haloes, in n--body simulations, have a boundary
layer (BL) with precise features. In particular, it encloses all dynamically
stable mass while, outside it, dynamical stability is lost soon. Particles can
pass through such BL, which however acts as a confinement barrier for dynamical
properties. BL is set by evaluating kinetic and potential energies (T(r) and
W(r)) and calculating R=-2T/W. Then, on BL, R has a minimum which closely
approaches a maximum of w= -dlog W/dlog r. Such ``requirement'' is
consistent with virial equilibrium, but implies further regularities. We test
the presence of a BL around haloes in spatially flat CDM simulations, with or
without cosmological constant. We find that the mass M_c, enclosed within the
radius r_c, where the requirement is fulfilled, closely approaches the
mass M_{dyn}, evaluated from the velocities of all particles within r_c,
according to the virial theorem. Using r_c we can then determine an individual
density contrast Delta_c for each virialized halo, which can be compared with
the "virial" density contrast (Omega_m: matter
density parameter) obtained assuming a spherically symmetric and unperturbed
fluctuation growth. The spread in Delta_c is wide, and cannot be neglected when
global physical quantities related to the clusters are calculated, while the
average Delta_c is ~25 % smaller than the corresponding Delta_v; moreover if
is defined from the radius linked to Delta_v, we have a much worse
fit with particle mass then starting from {\it Rw} requirement.Comment: 4 pages, 5 figures, contribution to the XXXVIIth Rencontres de
Moriond, The Cosmological Model, Les Arc March 16-23 2002, to appear in the
proceeding
Risk assessment of genetically engineered crops: fitness effects of virus-resistance transgenes in wild Cucurbita pepo
The development of crops genetically engineered for pathogen resistance has raised concerns that crop-to-wild gene flow could release wild or weedy relatives from regulation by the pathogens targeted by the transgenes that confer resistance. Investigation of these risks has also raised questions about the impact of gene flow from conventional crops into wild plant populations. Viruses in natural plant populations can play important roles in plant fecundity and competitive interactions. Here, we show that virus-resistance transgenes and conventional crop genes can increase fecundity of wild plants under virus pressure. We asked how gene flow from a cultivated squash (Cucurbita pepo) engineered for virus resistance would affect the fecundity of wild squash (C. pepo) in the presence and absence of virus pressure. A transgenic squash cultivar was crossed and backcrossed with wild C. pepo from Arkansas. Wild C. pepo, transgenic backcross plants, and non-transgenic backcross plants were compared in field plots in Ithaca, New York, USA. The second and third generations of backcrosses (BC2 and BC3) were used in 2002 and 2003, respectively. One-half of the plants were inoculated with zucchini yellow mosaic virus (ZYMV), and one-half of the plants were maintained as healthy controls. Virus pressure dramatically decreased the fecundity of wild C. pepo plants and non-transgenic backcross plants relative to transgenic backcross plants, which showed continued functioning of the virus-resistance transgene. In 2002, non-transgenic backcross fecundity was slightly higher than wild C. pepo fecundity under virus pressure, indicating a possible benefit of conventional crop alleles, but they did not differ in 2003 when fecundity was lower in both groups. We detected no fitness costs of the transgene in the absence of the virus. If viruses play a role in the population dynamics of wild C. pepo, we predict that gene flow from transgenic, virus-resistant squash and, to a much lesser extent, conventionally bred squash would increase C. pepo fecundity. Studies such as this one, in combination with documentation of the probability of crop-to-wild gene flow and surveys of virus incidence in wild populations, can provide a solid basis for environmental risk assessments of crops genetically engineered for virus resistance
Long-range interactions of metastable helium atoms
Polarizabilities, dispersion coefficients, and long-range atom-surface
interaction potentials are calculated for the n=2 triplet and singlet states of
helium using highly accurate, variationally determined, wave functions.Comment: RevTeX, epsf, 4 fig
Gravitational Geons Revisited
A careful analysis of the gravitational geon solution found by Brill and
Hartle is made. The gravitational wave expansion they used is shown to be
consistent and to result in a gauge invariant wave equation. It also results in
a gauge invariant effective stress-energy tensor for the gravitational waves
provided that a generalized definition of a gauge transformation is used. To
leading order this gauge transformation is the same as the usual one for
gravitational waves. It is shown that the geon solution is a self-consistent
solution to Einstein's equations and that, to leading order, the equations
describing the geometry of the gravitational geon are identical to those
derived by Wheeler for the electromagnetic geon. An appendix provides an
existence proof for geon solutions to these equations.Comment: 18 pages, ReVTeX. To appear in Physical Review D. Significant changes
include more details in the derivations of certain key equations and the
addition of an appendix containing a proof of the existence of a geon
solution to the equations derived by Wheeler. Also a reference has been added
and various minor changes have been mad
Benchmarking quantum control methods on a 12-qubit system
In this letter, we present an experimental benchmark of operational control
methods in quantum information processors extended up to 12 qubits. We
implement universal control of this large Hilbert space using two complementary
approaches and discuss their accuracy and scalability. Despite decoherence, we
were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state),
and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure
state using liquid state nuclear magnetic resonance quantum information
processors.Comment: 11 pages, 4 figures, to be published in PR
Comments on the Sign and Other Aspects of Semiclassical Casimir Energies
The Casimir energy of a massless scalar field is semiclassically given by
contributions due to classical periodic rays. The required subtractions in the
spectral density are determined explicitly. The so defined semiclassical
Casimir energy coincides with that obtained using zeta function regularization
in the cases studied. Poles in the analytic continuation of zeta function
regularization are related to non-universal subtractions in the spectral
density. The sign of the Casimir energy of a scalar field on a smooth manifold
is estimated by the sign of the contribution due to the shortest periodic rays
only. Demanding continuity of the Casimir energy under small deformations of
the manifold, the method is extended to integrable systems. The Casimir energy
of a massless scalar field on a manifold with boundaries includes contributions
due to periodic rays that lie entirely within the boundaries. These
contributions in general depend on the boundary conditions. Although the
Casimir energy due to a massless scalar field may be sensitive to the physical
dimensions of manifolds with boundary, its sign can in favorable cases be
inferred without explicit calculation of the Casimir energy.Comment: 39 pages, no figures, references added, some correction
- …
