1,535,371 research outputs found

    Fundamental groups of toroidal compactifications

    Get PDF
    We compute the fundamental group of a toroidal compactification of a Hermitian locally symmetric space D/ΓD/\Gamma, without assuming either that Γ\Gammais neat or that it is arithmetic. We also give bounds for the first Betti number.Comment: Final version. Fixes error pointed out by M. Roessler, leading to slightly but significantly changed statements: improved notatio

    Irreversibility of field-induced magnetostructural transition in NiCoMnSb shape memory alloy revealed by magnetization, transport and heat capacity studies

    Full text link
    The effects of magnetic field on the martensitic transition have been studied in Ni45Co5Mn38Sb12. We find a large field-induced irreversibility in this system, as revealed by the field dependence of resistivity, magnetization, and heat capacity data. At the critical temperature, the field-induced conversion of the martensitic to austenite phase is not reversible under any field variation. At this temperature any energy fluctuation induces nucleation and growth of the equilibrium austenite phase at the expense of the metastable martensitic phase and gets arrested. All these three measurements completely rule out the coexistence of austenite and martensitic phases in the irreversibility regime.Comment: 13 pages, 4 figure

    Periodic Orbits and Deformed Shell Structure

    Full text link
    Relationship between quantum shell structure and classical periodic orbits is briefly reviewed on the basis of semi-classical trace formula. Using the spheroidal cavity model, it is shown that three-dimensional periodic orbits, which are born out of bifurcation of planar orbits at large prolate deformations, generate the superdeformed shell structure.Comment: 8 pages including 8 figures, Talk at the Conference on Frontiers of Nuclear Structure, July 29th - August 2nd, 2002, UC Berkele

    Ring Wormholes in D-Dimensional Einstein and Dilaton Gravity

    Get PDF
    On the basis of exact solutions to the Einstein-Abelian gauge-dilaton equations in DD-dimensional gravity, the properties of static axial configurations are discussed. Solutions free of curvature singularities are selected; they can be attributed to traversible wormholes with cosmic string-like singularities at their necks. In the presence of an electromagnetic field some of these wormholes are globally regular, the string-like singularity being replaced by a set of twofold branching points. Consequences of wormhole regularity and symmetry conditions are discussed. In particular, it is shown that (i) regular, symmetric wormholes have necessarily positive masses as viewed from both asymptotics and (ii) their characteristic length scale in the big charge limit (GM2Q2GM^2 \ll Q^2) is of the order of the ``classical radius" Q2/MQ^2/M.Comment: Latex file, 15 page

    Heat capacity and magnetoresistance in Dy(Co,Si)2 compounds

    Full text link
    Magnetocaloric effect and magnetoresistance have been studied in Dy(Co1-xSix)2 [x=0, 0.075 and 0.15] compounds. Magnetocaloric effect has been calculated in terms of adiabatic temperatue change (Delta Tad) as well as isothermal magnetic entropy change (Delta SM) using the heat capacity data. The maximum values of DeltaSM and DeltaTad for DyCo2 are found to be 11.4 JKg-1K-1 and 5.4 K, respectively. Both DSM and DTad decrease with Si concentration, reaching a value of 5.4 JKg-1K-1 and 3 K, respectively for x=0.15. The maximum magnetoresistance is found to about 32% in DyCo2, which decreases with increase in Si. These variations are explained on the basis of itinerant electron metamagnetism occurring in these compounds.Comment: Total 8 pages of text and figure

    Competition of Color Ferromagnetic and Superconductive States in a Quark-Gluon System

    Full text link
    The possibility of color ferromagnetism in an SU(2) gauge field model is investigated. The conditions allowing a stable color ferromagnetic state of the quark system in the chromomagnetic field occupying small domains are considered. A phase transition between this state and the color superconducting state is considered. The effect of finite temperature is analyzed.Comment: 21 pages, 4 Postscript figure

    Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy

    Full text link
    The effect of pressure on the magnetic and the magnetocaloric properties around the martensitic transformation temperature in NiCoMnSb Heusler alloy has been studied. The martensitic transition temperature has significantly shifted to higher temperatures with pressure, whereas the trend is opposite with the application of applied magnetic field. The maximum magnetic entropy change around the martensitic transition temperature for Ni45Co5Mn38Sb12 is 41.4 J/kg K at the ambient pressure, whereas it is 33 J/kg K at 8.5 kbar. We find that by adjusting the Co concentration and applying suitable pressure, NiCoMnSb system can be tuned to achieve giant magnetocaloric effect spread over a large temperature span around the room temperature, thereby making it a potential magnetic refrigerant material for applications.Comment: 16 pages, 5 figure
    corecore