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Abstract

We compute the fundamental group of a toroidal compactification
of a Hermitian locally symmetric space D/Γ, without assuming either
that Γ is neat or that it is arithmetic. We also give bounds for the first
Betti number.

Many important complex algebraic varieties can be described as locally
symmetric varieties. Examples include modular curves H/Γ, where H is the
upper half-plane and Γ < PSL(2,Z); classifying spaces for Hodge structures
or (in cases where a Torelli theorem holds) moduli spaces of polarised va-
rieties, such as moduli of abelian varieties and of K3 surfaces; and special
surfaces, such as Hilbert modular surfaces.

Locally symmetric varieties are in general non-compact, and we want to
be able to compactify them and to study the geometry of the compactifi-
cations, especially the birational geometry, which does not depend on the
choice of compactification. We work with toroidal compactifications as de-
scribed in [AMRT].

Two basic birational invariants of a compact complex manifold X are
the Kodaira dimension κ(X) and the fundamental group π1(X). There is
an extensive literature on computing Kodaira dimensions of specific locally
symmetric varieties, which is usually very difficult.

Computing the fundamental group is easier, but there are some gaps
in the literature which we aim to fill. We study the fundamental group
of a toroidal compactification (D/Γ)′Σ of a non-compact, not necessarily
arithmetic quotient D/Γ by a lattice Γ. In general this is not a manifold, but

∗Research partially supported by Contract 015/9.04.2014 with the the Scientific Foun-
dation of Kliment Ohridski University of Sofia.
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it is normal and can be chosen to have only quotient singularities. By [Ko,
Sect 7] these do not affect the fundamental group.

The main result of the article is Theorem 4.3, describing π1((D/Γ)
′
Σ) as

a quotient of the lattice Γ.
Acknowledgements: The first author is grateful to a referee for point-

ing out a flaw in a previous version and for bringing to her attention several
references. We also thank Klaus Hulek and Xiuping Su for useful remarks.

1 Background

In this section we explain the background to the problem and establish some
terminology and notation.

A symmetric space of non-compact type is a quotient D = G/K of a
connected non-compact semisimple Lie group G, assumed to be the real
points of a linear algebraic group defined over Q, by a connected maximal
compact subgroup K of G. If the centre of K is not discrete, then D carries
a Hermitian structure and hence the structure of a complex manifold, in
fact a Kähler manifold [He, Theorem VIII.6.1.]).

By a lattice in G we mean a discrete subgroup of G of finite covolume
with respect to Haar measure. A lattice Γ is said to be arithmetic if Γ∩G(Z)
is of finite index in both Γ and G(Z). It is said to be neat if the subgroup
of C∗ generated by all eigenvalues of elements of Γ is torsion free.

A locally symmetric variety is the quotient of a Hermitian symmetric
space D by a lattice Γ < G. IfD/Γ is compact then Γ is said to be cocompact

or uniform. Non-uniform lattices are very common, however, and it is this
case that we are concerned with. By [BB] (for Γ arithmetic) and [Mok] these
quotients are always algebraic varieties, not just complex analytic spaces.

Toroidal compactifications are constructed and described in detail in
[AMRT], and it is shown in [Mok] that the construction applies to non-
arithmetic lattices as well. In fact, for all D = G/K except the complex
ball Bn = SU(n, 1)/S(U(n) × U(1)), Margulis [Ma] showed that an irre-
ducible lattice Γ < G is necessarily arithmetic. An extensive reference on
toroidal and other compactifications of locally symmetric spaces D/Γ is the
monograph [BJ] of Borel and Ji.

The first results on the fundamental group of a smooth compactifica-
tion of a locally symmetric space concerned Siegel modular 3-folds, where
G = Sp(2,R). These are moduli spaces of abelian surfaces and some such
cases were studied in [HK], in [Kn] and in [HSa]. More generally, the funda-
mental group of a toroidal compactification of an arbitrary Hermitian locally
symmetric variety is studied in [Sa].

Write G = G1 × · · · × Gs as a product of simple factors. We say that
a parabolic proper subgroup Q = Q1 × · · · × Qs < G is semimaximal if
each Qj is either Gj or a maximal parabolic subgroup of Gj . Denote by
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MParΓ the set of Γ-rational semimaximal parabolic subgroups. It is shown
in [Sa] that if Γ < G is a neat arithmetic non-uniform lattice Γ < G, then
a toroidal compactification (D/Γ)′Σ satisfies π1(D/Γ)

′
Σ = Γ/Υ, where Υ is

the subgroup of Γ generated by the centres of the unipotent radicals of all
Q ∈ MParΓ. Moreover, in [GHS] it is shown that there is a surjective group
homomorphism Γ → π1((D/Γ)

′
Σ), whose kernel contains all γ ∈ Γ with a

fixed point on D.
Let Λ be the subgroup of Γ generated by all γ ∈ Γ∩LQ with γk ∈ Γ∩AQ

for some k ∈ N and some Q ∈ MParΓ with split component AQ and Levi
subgroup LQ = AQ ⋊MQ: from this definition, Λ is normal in Γ.

Our main result, Theorem 4.3, is that π1((D/Γ)
′
Σ) = Γ/ΛΥ for an arbi-

trary (not necessarily arithmetic) non-uniform lattice Γ < G.
Here is a synopsis of the paper. Section 2 introduces some notation and

terminology and describes the structure of Γ-rational parabolic subgroups,
largely following [BJ]. Section 3 describes the toroidal compactifications
(D/Γ)′Σ and their coverings (D/Γo)

′
Σ for normal subgroups (not necessarily

lattices) Γo ⊳ Γ containing Υ. Section 4 comprises the main results of the
article. We show in Proposition 4.4 that any element γΥ ∈ Γ/Υ with a fixed
point on (D/Υ)′Σ has a representative γ ∈ Γ with γ ∈ Γ∩LQ and γk ∈ Γ∩AQ
for some Q ∈ MParΓ and k ∈ N. This suffices to prove Theorem 4.3, and
from that we deduce bounds on the first Betti numbers in Subsection 4.2.

2 Parabolic subgroups

We collect here some properties of Hermitian symmetric spaces D = G/K
of non-compact type and parabolic subgroups Q of G. For more details see
[BJ, Chapter 1].

2.1 Langlands decomposition of a parabolic subgroup

Any parabolic subgroup Q of G has a Langlands decomposition [BJ, Equa-
tion (I.1.10)]

Q = NQAQMQ

where NQ is the unipotent radical of Q. We write LQ = AQMQ, the Levi

subgroup of Q, and RQ = NQ⋊AQ, the solvable radical of Q. The subgroup
AQ is called the split component of Q, and MQ is a semisimple complement
of RQ. All these groups are uniquely defined once we choose a maximal
compact subgroup K of G.

We denote by UQ the centre of the unipotent radical NQ of Q. Since NQ

is a 2-step nilpotent group, i.e. [[NQ, NQ], NQ] = 0, we have UQ = [NQ, NQ],
the commutator subgroup. We may identify UQ with its Lie algebra uQ

∼=
Rm, for m = dimR UQ. The quotient VQ = NQ/UQ is also an abelian group,
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naturally isomorphic to Cn [BJ, (III.7.9)] and NQ = UQ⋊VQ is a semi-direct
product of UQ and VQ.

The semi-simple complement MQ of the solvable radical RQ of Q is a
product MQ = G′

Q,l×GQ,h of semisimple groups G′
Q,l, GQ,h of noncompact

type [BJ, (III.7.8)].
This gives us the refined Langlands decomposition

Q = [(UQ ⋊ VQ)⋊AQ]⋊ (G′
Q,l ×GQ,h) (1)

of an arbitrary parabolic subgroup Q of G. Note also that G = QK.
The group AQ ∼= (Rs>0, .) is an R-split torus of G of dimension s ≤ r,

where r = rkRG is the real rank of G.
The symmetric space D has an embedding in a space Ď, the compact

dual, on which G acts. The topological boundary of D then decomposes
into complex analytic boundary components corresponding to parabolic sub-
groups Q: namely, Q is the normaliser of the boundary component F (Q).
See [BJ, Proposition I.5.28] or [AMRT, Proposition III.3.9.] for details.

If F (P ) ⊆ F (Q) then U(P ) ⊇ U(Q) by [AMRT, Theorem III.4.8(i)].

2.2 Horospherical decomposition

For any parabolic subgroup we have G = QK [BJ, (I.1.20)], so Q acts transi-
tively on D; moreover, Q∩K =MQ∩K. As a result, the refined Langlands
decomposition (1) of Q induces the refined horospherical decomposition

D = UQ × VQ ×AQ ×D′
Q,l ×DQ,h (2)

of D with D′
Q.l = G′

Q,l/G
′
Q,l ∩K and DQ,h = GQ,h/GQ,h ∩K [BJ, Lemma

III.7.9]). The equality in (2) is a real analytic diffeomorphism. The fac-
tors DQ,h

∼= F (Q) and D′
Q,l are respectively Hermitian and Riemannian

symmetric spaces of noncompact type.
The parabolic group Q = (NQ⋊AQ)⋊(G′

Q,l×GQ,h) acts on the Hermitian
symmetric space D = NQ ×AQ ×D′

Q,l ×DQ,h by the rule

(n0, a0, g
′
0, g0)(n, a, z

′, z) = ((a0, g
′
0, g0)

−1n0(a0, g
′
0, g0)n, a0a, g

′
0z

′, g0z) (3)

for (n0, a0, g
′
0, g0) ∈ (NQ⋊AQ)⋊ (G′

Q,l×GQ,h) and (n, a, z′, z) ∈ NQ×AQ×
D′
Q,l ×DQ,h (cf. [BJ, Equation (I.1.11)]).
We need more detail about this action. Since UQ = [NQ, NQ], we see that

UQ is a normal subgroup of Q, and the action of AQ⋊ (G′
Q,l×GQ,h) on NQ

and UQ descends to VQ ∼= NQ/UQ. If α0 = (a0, g
′
0, g0) ∈ AQ⋊ (G′

Q,l×GQ,h)
and n = (u, v) ∈ UQ⋊VQ then the first term in the right-hand side of (3) is
given by

α−1
0 (u0, v0)α0(u, v) = (α−1

0 u0α0 + u, α−1
0 v0α0 + v).

Altogether, the Q-action on D is given by

(u0, v0, α0)(u, v, ζ
′, ζ) = (α−1

0 u0α0 + u, α−1
0 v0α0 + v, a0a, g

′
0ζ

′, g0ζ). (4)
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2.3 Siegel domains

In [P-S] Pyatetskii-Shapiro realises the Hermitian symmetric spaces D =
G/K of noncompact type as Siegel domains of third kind. These are families
of open cones, parametrised by products of complex Euclidean spaces and
Hermitian symmetric spaces of noncompact type.

In the refined horospherical decomposition (2), the AQ-orbit

CQ = AQD
′
Q,l = {(a, ζ ′) | a ∈ AQ, ζ

′ ∈ D′
Q,l} (5)

of the Riemannian symmetric space D′
Q,l is an open, strongly convex cone

in UQ ∼= Rm [BJ, Lemma III.7.7]. Note that the reductive group GQ,l =
AQ⋊G

′
Q,l acts transitively on CQ since CQ = GQ,l/GQ,l∩K = GQ,l/G

′
Q,l∩K.

We embed CQ in the complexification UQ ⊗R C ∼= (Cm,+) of UQ as a
subset iCQ ⊂ iUQ with pure imaginary components. Combining with (2),
one obtains a real analytic diffeomorphism of D onto the product

(UQ + iCQ)× VQ ×DQ,h. (6)

which will be called the Siegel domain realisation of D associated with Q.
See [AMRT] for the relation between (6) and the classical Siegel domain
presentation of D.

In these coordinates, the action of Q (with notation as in (4)) is given by

(u0, v0, a0, g
′
0, g0)(u+ i(a, ζ ′), v, ζ)

= ((α−1
0 u0α0 + u) + i(a0a, g

′
0ζ

′), α−1
0 v0α0 + v, g0ζ)

(7)

where (u+ i(a, ζ ′), v, ζ) ∈ (UQ + iCQ)× VQ ×DQ,h.

3 Toroidal compactifications

We recall briefly enough detail on toroidal compactification for our immedi-
ate purposes: for full details we refer to [AMRT].

3.1 Admissible fans and collections

Suppose that Q ∈ MParΓ: then ΥQ = Γ∩UQ ∼= Zm is a lattice in UQ ∼= Rm.
We say that a closed polyhedral cone σ ⊂ UQ is ΥQ-rational if σ = R≥0u1+
· · ·+ R≥0us for some ui ∈ ΥQ.

A fan (see [Fu]) Σ(Q) is a collection of closed polyhedral cones in UQ
such that any face of a cone in Σ(Q) is also in Σ(Q) and any two cones in
Σ(Q) intersect in a common face. It is ΥQ-rational if all cones in Σ(Q) are
ΥQ-rational.

The fan Σ(Q) in UQ is said to be Γ-admissible if it is ΥQ-rational, it
decomposes CQ (that is, CQ ⊆

⋃

σ∈Σ(Q) σ) and ΓQ,l = Γ∩GQ,l acts on Σ(Q)
with only finitely many orbits.
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The lattice Γ acts on MParΓ by conjugation. We say that a family Σ =
{Σ(Q)}Q∈MParΓ of Γ-admissible fans Σ(Q) is a Γ-admissible family if:

(i) γΣ(Q) = Σ(Qγ) for all γ ∈ Γ, Q ∈ MParΓ and

(ii) Σ(Q) = {σ ∩ UQ | σ ∈ Σ(P )} whenever F (P ) ⊆ F (Q), for P, Q ∈
MParΓ.

3.2 Partial compactification at a cusp

For Q ∈ MParΓ, the quotient T(Q) = (UQ⊗RC)/ΥQ
∼= (C∗)m is an algebraic

torus over C.
A Γ-admissible fan Σ(Q) determines a toric variety XΣ(Q) that includes

T(Q) as a dense Zariski-open subset. More precisely, XΣ(Q) is the disjoint
union of T(Q) with the quotients T(Q)σ of T(Q) by the complex algebraic
tori SpanC(σ)/(SpanC(σ) ∩ΥQ), generated by the cones σ ∈ Σ(Q).

Bearing in mind that (UQ+ iCQ)/ΥQ is an open subset of T(Q), we take

the closure (UQ + iCQ)/ΥQ of (UQ+ iCQ)/ΥQ in XΣ(Q) and define YΣ(Q) as

the interior of (UQ + iCQ)/ΥQ in XΣ(Q).
The Siegel domain presentation (6) of D associated with Q provides a

real analytic diffeomorphism

D/ΥQ = (UQ + iCQ)/ΥQ × VQ ×DQ,h,

and the Γ-admissible fan Σ(Q) defines a partial compactification

(D/ΥQ)Σ(Q) = ZΣ(Q) = YΣ(Q) × VQ ×DQ,h. (8)

By subdividing Σ(Q) we may, and henceforth do, assume that XΣ(Q) and
YΣ(Q) are smooth: see [Fu].

To describe the Q-action on ZΣ(Q), consider the ΥQ-covering map

ǫQ : D = (UQ+ iCQ)×VQ×DQ,h −→ D/ΥQ = (UQ+ iCQ)/ΥQ×VQ×DQ,h,

given in the notation of (5) and (7) by

ǫQ(u+ i(a, ζ ′), v, ζ) =
(

eQ(u+ i(a, ζ ′)), v, ζ
)

,

where eQ : UQ ⊗ C → T(Q) is the canonical map with kernel ΥQ. If we
identify ΥQ with Zm then we can identify eQ with exponentiation, i.e.
eQ(z1, . . . , zm) = (e2πiz1 , . . . , e2πizm) for (z1, . . . , zm) ∈ Cm. According to
(7), the action of (u0, v0, α0) ∈ Q with u0 ∈ UQ, v0 ∈ VQ, α0 = (a0, g

′
0, g0) ∈

AQ ⋊ (G′
Q,l ×GQ,h) on D/ΥQ = ǫQ(D) is by the rule

(u0, v0,a0, g
′
0, g0)

(

eQ(u+ i(a, ζ ′)), v, ζ
)

=
(

eQ((α
−1
0 u0α0) + u+ i(a0a, g

′
0ζ

′)), α−1
0 v0α0 + v, g0ζ

) (9)

with α0 = (a0, g
′
0, g0). This Q-action extends by continuity to ZΣ(Q).
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3.3 The gluing maps

For P, Q ∈ MParΓ with F (P ) ⊆ F (Q), we are going to describe explicitly
the holomorphic map µQP : ZΣ(Q) −→ ZΣ(P ) of [AMRT, Lemma III.5.4].

According to [AMRT, Theorem III.4.8], UQ is an R-linear subspace of
UP . Therefore ΥQ < ΥP and the identity map

idD : D = (UQ + iCQ)× VQ ×DQ,h −→ D = (UP + iCP )× VP ×DP,h

induces a holomorphic covering

µQP : D/ΥQ = (UQ + iCQ)/ΥQ × VQ ×DQ,h −→ D/ΥP

given by µQP (ΥQx) = ΥPx.
The inclusions UQ⊗C ⊂ UP ⊗C and ΥQ < ΥP induce a homomorphism

µQP,1 : T(Q) −→ T(P ), which extends to µQP,1 : XΣ(Q) −→ XΣ(P ), mapping

YΣ(Q) into YΣ(P ) ⊂ (UP + iCP )/ΥP . In this way, one obtains a holomorphic
gluing map

µQP : ZΣ(Q) = YΣ(Q) × VQ ×DQ,h −→ YΣ(P ) × VP ×DP,h = ZΣ(P ),

given by

µQP

(

lim
t→∞

(yt, v, z)
)

= lim
t→∞

µQP (yt, v, z) = lim
t→∞

(yt +ΥP /ΥQ, v, z)

where yt ∈ (UQ + iCQ)/ΥQ for t ∈ R tends to some point lim
t→∞

yt ∈ YΣ(Q).

From this definition, µQQ is the identity on ZΣ(Q) = (D/ΥQ)Σ(Q).

3.4 Toroidal compactifications and coverings

We recall the construction of a toroidal compactification (D/Γ)′Σ of a lo-
cally symmetric variety D/Γ, associated with a Γ-admissible family Σ =
{Σ(Q)}Q∈MParΓ of fans Σ(Q) in UQ. In the notation of subsection 3.2, con-
sider the disjoint union

∐

Q∈MParΓ
ZΣ(Q).

We denote by Υ the subgroup of Γ generated by ΥQ for all Q ∈ MParΓ.
Suppose that Γo is a normal subgroup of Γ containing Υ. Its action on D
induces an equivalence relation ∼Γo on

∐

Q∈MParΓ
ZΣ(Q), as in the proof of

[Sa, Theorem 2.1]: for Γo = Γ it is described in [AMRT, III.5]. Let z1 ∈
ZΣ(Q1) and z2 ∈ ZΣ(Q2): then z1 ∼Γo z2 if there exist γ ∈ Γo, Q ∈ MParΓ

and z ∈ ZΣ(Q), such that F (Q) ⊇ F (Q1), F (Q) ⊇ F (Qγ2), µ
Q
Q1

(z) = z1 and

µQ
Q

γ
2
(z) = γz2.

Then we put

(D/Γo)
′
Σ =





∐

Q∈MParΓ

ZΣ(Q)



 / ∼Γo .
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In [Sa] this is used to construct the (Γ/Υ)-Galois covering (D/Υ)′Σ of (D/Γ)′Σ
and show that (D/Υ)′Σ is a simply connected complex analytic space. Notice
that Γo is not required to be a lattice, and that (D/Υ)′Σ is not compact.

In the proof of [Sa, Theorem 1.5] it is shown that ZΣ(Q), which are dif-
feomorphic to YΣ(Q) × VQ ×DQ,h for all Q ∈ MParΓ, are simply connected.
Further, the proof of [Sa, Theorem 2.1] establishes that the natural coverings
D/ΥQ → D/Υ extend to open holomorphic maps πUΣ(Q) : ZΣ(Q) → (D/Υ)′Σ,
which are biholomorphic onto their images.

4 The fundamental group and first Betti number

4.1 The fundamental group

We begin by stating two theorems that summarise the results from [Sa]
and [GHS] on the fundamental group of a toroidal compactification (D/Γ)′Σ
of a quotient of D = G/K by an arithmetic lattice Γ < G.

Theorem 4.1 [Sa, Corollary 1.6, Theorem 2.1] Let D = G/K be a Her-
mitian symmetric space and let Γ be a non-uniform arithmetic lattice in
G. Then the fundamental group π1((D/Γ)

′
Σ) of a toroidal compactification

(D/Γ)′Σ of D/Γ is a quotient group of Γ/Υ. In particular, if Γ is a neat
arithmetic non-uniform lattice then π1((D/Γ)

′
Σ) = Γ/Υ.

The above is a more carefully stated version of the results in [Sa]. Recall
that Υ is the group generated by ΥQ for all Q ∈ MParΓ. In a similar style,
we define Λ to be the subgroup of Γ generated by all γ ∈ Γ ∩ LQ such that
γk ∈ AQ for some k ∈ N and some Q ∈ MParΓ.

Theorem 4.2 [GHS, Lemma 5.2, Proposition 5.3] Under the conditions of
Theorem 4.1, there is a commutative diagram

Γ π1(D/Γ)

π1(D/Γ)
′
Σ

✲ψ

❅
❅
❅
❅❅❘

ϕ

❄

of surjective group homomorphisms, such that kerϕ and kerψ contain all
γ ∈ Γ with a fixed point on D.

The following is the main result of the present paper. We use the notation
from Subsection 2.1.

8



Theorem 4.3 Let D = G/K be a Hermitian symmetric space and let Γ be
a non-uniform lattice in G. Then for any Γ-admissible family Σ, the toroidal
compactification (D/Γ)′Σ has fundamental group

π1((D/Γ)
′
Σ) = Γ/ΛΥ.

Proof. According to [Sa], (D/Υ)′Σ is a path connected simply connected
locally compact topological space and Γ/Υ acts properly discontinuously on
(D/Υ)′Σ by homeomorphisms. More precisely, γΥ: (Υq) 7→ Υγq defines a
Γ/Υ-action on D/Υ, which extends continuously to (D/Υ)′Σ. The quotient
space (D/Υ)′Σ/(Γ/Υ) = (D/Γ)′Σ is the toroidal compactification of D/Γ
associated with Σ. By a theorem of Armstrong [Ar]

π1((D/Γ)
′
Σ) = (Γ/Υ)/(Γ/Υ)Fixo

where (Γ/Υ)Fixo is the subgroup of Γ/Υ generated by elements γΥ with a
fixed point on (D/Υ)′Σ.

Theorem 4.3 therefore follows from Proposition 4.4, which establishes
that (Γ/Υ)Fixo = ΛΥ/Υ. ✷

In order to describe the action of Γ/Υ on (D/Υ)′Σ note that the Γ-action
on MParΓ by conjugation determines holomorphic maps γ : ZΣ(Q) → ZΣ(Qγ)

for all γ ∈ Γ and Q ∈ MParΓ. Any γ ∈ Γ transforms the ∼Υ-equivalence
class of z ∈ ZΣ(Q) into the∼Υ-equivalence class of γz, giving a biholomorphic
map γ : (D/Υ)′Σ −→ (D/Υ)′Σ. By definition of ∼Υ, all γ ∈ Υ act trivially
on (D/Υ)′Σ and the Γ-action on (D/Υ)′Σ reduces to a (Γ/Υ)-action

(Γ/Υ)× (D/Υ)′Σ −→ (D/Υ)′Σ,

given by
(γΥ)πUΣ(Q)(z) = πUΣ(Qγ)(γz) (10)

for γΥ ∈ Γ/Υ and z ∈ ZΣ(Q).

Proposition 4.4 In the notations from Theorem 4.3, a coset γ0Υ ∈ Γ/Υ
has a fixed point on (D/Υ)′Σ if and only if for some k ∈ N and some Q ∈
MParΓ, there is a representative γ ∈ Γ∩LQ of γ0Υ = γΥ with γk ∈ Γ∩AQ.
Hence the subgroup (Γ/Υ)Fixo of Γ/Υ satisfies (Γ/Υ)Fixo = ΛΥ/Υ.

Proof. We first prove the “only if” part of the statement.
We claim that if γ0Υ ∈ Γ/Υ has a fixed point on

(D/Υ)′Σ =





∐

P∈MParΓ

ZΣ(P )



 / ∼Υ

9



then there exist γ1 ∈ γ0Υ and y ∈ ZΣ(Q) for some Q ∈ MParΓ, such that
γ1y = y. That is, if a coset of Υ has a fixed point mod Υ then some
representative of that coset has a fixed point “on the nose”.

To prove this, notice that if z0 ∼Υ γ0z0 for some z0 ∈ ZΣ(P ), then there

exist Q1 ∈ MParΓ, z1 ∈ ZΣ(Q1) and u1 ∈ Υ such that F (P ) ⊆ F (Q1) and

µQ1

P (z1) = z0, and F (P
u1γ0) ⊆ F (Q1) and µ

Q1

Pu1γ0 (z1) = u1γ0z0.

If F (Q1) = F (P ), then Q1 = P and in (10) we have µQ1

Pu1γ0 = µQ1

P =
idZΣ(P )

and z0 = u1γ0z0. Since Υ is a normal subgroup of Γ, we may take
γ1 = u1γ0 ∈ Υγ0 = γ0Υ. In particular, this shows that the claim is true if
F (P ) is of maximal dimension.

Now we conclude the proof of the claim by induction on codimF (P ): sup-
pose that the claim holds for all P ′ ∈ MParΓ with dimF (P ′) > dimF (P ),
and take Q1 as above. If F (Q1) = F (P ) we are done. If not, then

z0 ∼Υ z1 and γ0z0 ∼Υ γ0z1, because µ
Q

γ0
1

P γ0 (γ0z1) = γ0z0. On the other
hand, γ0z0 ∼Υ z1, so z1 ∼Υ γ0z1 because ∼Υ is an equivalence relation.
Thus γ0Υ has the fixed point z1 ∈ ZΣ(Q1) so the claim follows by taking
P ′ = Q1.

Suppose then that γ1 ∈ Γ has a fixed point y ∈ ZΣ(Q) for some Q ∈
MParΓ. Then y = γ1y ∈ ZΣ(Qγ1 ) implies that Qγ1 = Q; but the parabolic
subgroup Q of G coincides with its normaliser in G, so γ1 ∈ Q. We may
therefore use the Langlands decomposition of Q and write

γ1 = (u1, v1, a1, g
′
1, g1) ∈ [(UQ ⋊ VQ)⋊AQ]⋊ (G′

Q,l ×GQ,h).

As above we take

α1 = (a1, g
′
1, g1) ∈ LQ = AQ ⋊ (G′

Q,l ×GQ,h).

Any element of XΣ(Q) may be written as a limit of elements of T(Q), as
lim
t→∞

(eQ(ut+ ixt)) and if the element is in YΣ(Q) then we may take xt ∈ CQ.

So
y = ( lim

t→∞
eQ(ut + ixt), v, ζ) ∈ YΣ(Q) × VQ ×DQ,h.

Then by (9) and the continuity of the Q-action on (D/ΥQ)Σ(Q)

γ1y = ( lim
t→∞

eQ((α
−1
1 u1α1) + ut + i(a1, g

′
1)xt), α

−1
1 v1α1 + v, g1ζ) = y

Comparing the VQ coordinates gives α−1
1 v1α1 = 0 ∈ VQ ∼= Cn and hence

v1 = 0. From the last component we get g1ζ = ζ.
From the first component we get the equation in XΣ(Q)

lim
t→∞

eQ(α
−1
1 u1α1 + ut + i(a1, g

′
1)xt) = lim

t→∞
eQ(ut + ixt)
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and this holds exactly when α−1
1 u1α1 ∈ ΥQ = ker eQ and lim

t→∞
i(a1, g

′
1)xt =

lim
t→∞

ixt. Therefore we may take γ′ = (−α−1
1 u1α1, 0, id) and γ = γ1γ

′ ∈ γ0Υ,

and we compute

γ = (u1, 0, α1)(−α
−1
1 u1α1, 0, id)

= (α−1
1 u1α1 − α−1

1 u1α1, α
−1
1 0α1 + 0, α1)

= (0, 0, α1) ∈ Γ ∩ LQ.

The remaining assertion of the “only if” part is that γ is torsion mod AQ.
If γ has a fixed point y and y ∈ D/ΥQ then γ belongs to the compact

stabiliser of y in the isometry group G of D and hence γ is torsion. If
y ∈ ZΣ(Q) \ (D/ΥQ) we need to look at g1 and g′1. For g1 what we need
is immediate: it is in the stabiliser of ζ ∈ DQ,h and isotropy groups in
symmetric spaces are always torsion, so g1 is of finite order: by replacing γ
with a power we may assume that g1 is the identity.

For the Riemannian part g′1 a little more work is needed. The element
γ has a fixed point y′ = lim

t→∞
eQ(ut + ixt) ∈ XΣ(Q) \ T(Q), so y′ ∈ T(Q)σ

for some unique σ ∈ Σ(Q). Therefore γ preserves σ. If we assume, as we
may do, that Q has been chosen so as to maximise dimF (Q) (see [AMRT,
Lemma III.5.5]), then σ ∩ CQ 6= ∅ (remember that CQ is an open cone but
σ is closed): this follows from [AMRT, Theorem III.4.8(ii)].

Since γ preserves σ, it permutes the top-dimensional cones of which σ is
a face: there are finitely many of these as long as σ ∩ CQ 6= ∅. Therefore
some power of γ preserves a top-dimensional cone, so we may as well assume
that σ is top-dimensional. The action of γ is thus determined by its action
on σ =

∑q
i=1R≥0ui.

Thus γ permutes the rays R≥0ui (it may not fix them pointwise) and
therefore some power, in fact γq!, fixes all the rays, so we may as well
assume that γ fixes all the rays. In particular it fixes a rational basis of
UQ up to scalars. Now consider the real subgroup of Q that fixes that basis
up to scalars. Its identity component is a torus, and because the ui are
defined over Q it is R-split (in fact Q-split) and therefore it is contained in
the maximal R-split torus in Q, which is AQ. So some power of γ is in AQ,
as required.

For the converse (the “if” part), suppose that γΥ ∈ Γ/Υ with γ ∈ Γ∩LQ
and γk = a ∈ AQ for some Q ∈ MParΓ. Since γ ∈ Q it preserves the cone
C = CQ. By the Brouwer fixed point theorem, γ preserves a ray ρ′ in CQ.

We claim that there exists a boundary component F (P ), for some P ∈
MParΓ, fixed by γ such that γ preserves a ray ρ = R>0uρ in the interior of
CP . This is trivial if dimCQ = 1. We shall proceed by induction on dimCQ.

The ray ρ′ is preserved by a, with eigenvalue λ say, and ρ′ belongs to a
unique real boundary component C ′ of C, since C is the disjoint union of its
real boundary components by [AMRT, Proposition II.3.1]. Let Hλ be the
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λ-eigenspace of a in UQ. Then Hλ ∩ C is a boundary component of C and
contains ρ′, so Hλ∩C = C ′. Thus the normaliser of C ′ in Aut(C) is rational
because it is the normaliser of the rational linear subspace Hλ. Therefore
by [AMRT, Corollary II.3.22], C ′ is a rational boundary component. But γ
preserves C ′, and dimC ′ < dimC.

We may write γ = (a1, g
′
0, g0) for some a1 ∈ AQ, because LQ = AQ ⋊

(G′
Q,l × GQ,h). Then g0 ∈ GQ,h is of finite order and has a fixed point

ζ ∈ DQ,h, and we may assume that γ preserves ρ = R>0uρ in CQ.
Writing eQ(u+ i∞ρ) for lim

t→∞
eQ(u+ i(tuρ)) ∈ XΣ(Q), the point

z = (eQ(0 + i∞ρ), 0, ζ) ∈ ZΣ(Q) = YΣ(Q) × VQ ×DQ,h

is fixed by γ = (0m, 0n, a1, g
′
0, g0) ∈ ((UQ⋊VQ)⋊AQ)× (G′

Q,l×GQ,h), since,
writing α0 = (a1, g

′
0, g0) ∈ LQ = AQ ⋊ (G′

Q,l ×GQ,h), we have

γz = (eQ(α
−1
0 0mα0 + ia1∞ρ), α

−1
0 0nα0, g0ζ)

= (eQ(0 + i∞ρ), 0, ζ) = z.

Therefore γΥ fixes the image of z in (D/Υ)′Σ and ΛΥ/Υ ⊆ (Γ/Υ)Fixo . That
concludes the proof of Proposition 4.4. ✷

4.2 The first Betti number

We can use Theorem 4.3 to give bounds on the first Betti number of the
toroidal compactifications.

Corollary 4.5 Suppose that D = G/K is a Hermitian symmetric space
of non-compact type without 1-dimensional factors and Γ is a non-uniform
lattice of G. Let r be the real rank of G and h be the number of Γ-conjugacy
classes of Γ-rational semimaximal parabolic subgroups of G. Then

rkZH1(D/Γ,Z)− hr ≤ rkZH1((D/Γ)
′
Σ,Z) ≤ rkZH1(D/Γ,Z). (11)

If Γ is neat then

rkZH1((D/Γ)
′
Σ,Z) = rkZH1(D/Γ,Z).

Proof. For an arbitrary group G we denote by abG its abelianisation
ab(G) = G/[G,G]. If S is a complex analytic space then H1(S,Z) =
abπ1(S).

If H is a normal subgroup of G then [G/H,G/H] = [G,G]H/H and

ab(G/H) = (G/H)/([G,G]H/H) ∼= G/[G,G]H = G/H[G,G].

Therefore by Theorem 4.3

H1((D/Γ)
′
Σ,Z)

∼= ab(Γ/ΥΛ) ∼= Γ/ΛΥ[Γ,Γ].
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On the other hand, D is a path connected, simply connected locally compact
space with a properly discontinuous action of Γ by homeomorphisms. Let Φ
be the subgroup of Γ generated by the elements γ ∈ Γ with a fixed point on
D. By [Ar], the fundamental group of D/Γ is π1(D/Γ) = Γ/Φ. Therefore
H1(D/Γ,Z) ∼= ab(Γ/Φ) ∼= Γ/Φ[Γ,Γ] and

H1((D/Γ)
′
Σ,Z)

∼= (Γ/Φ[Γ,Γ])/(ΛΥ[Γ,Γ]/Φ[Γ,Γ]) ∼= H1(D/Γ,Z)/F

for the abelian group

F = ΛΥ[Γ,Γ]/Φ[Γ,Γ] < Γ/Φ[Γ,Γ] ∼= H1(D/Γ,Z).

In particular,

rkZH1(D/Γ,Z) = rkZH1((D/Γ)
′
Σ,Z) + rkZ F.

To verify (11), it suffices to show that Fo = ΦΥ[Γ,Γ]/Φ[Γ,Γ] is a finite
subgroup of F and that rkZ(F ) = rkZ(F/Fo) ≤ hr.

We check the rank condition first. For any Q ∈ MParΓ we define ΛQ to
be the subgroup of Γ ∩ LQ generated by all γ ∈ Γ ∩ LQ such that γk ∈ AQ
for some k ∈ N (i.e. the elements that are torsion mod AQ). We define ΛAQ
to be the subgroup of Γ∩AQ of elements that arise in this way: that is, ΛAQ
is the group generated by {γk ∈ Γ ∩AQ | γ ∈ ΛQ, k ∈ N}.

Consider the finitely generated abelian group LQ = ΛQΥ[Γ,Γ]/ΦΥ[Γ,Γ]
and the subgroup AQ = ΛAQΥ[Γ,Γ]/ΦΥ[Γ,Γ]. These both have the same
rank, because the quotient LQ/AQ is abelian and generated by torsion ele-
ments so it is finite.

Choose representatives Q1, . . . , Qh for each Γ-conjugacy class in MParΓ.
Then F/Fo is generated by the LQi

, and therefore

rkZ(F ) = rkZ(F/Fo) ≤
h
∑

i=1

rkZ(LQi
) =

h
∑

i=1

rkZ(AQi
).

However, AQ is a discrete subgroup of AQ, so rkZ AQ < rkRAQ ≤ r =
rkR(G), and this gives the bound on rkZ(F ).

It remains to show that Fo is finite. It is certainly finitely generated,
because it is generated by all ΥQ[Γ,Γ]Φ/[Γ,Γ]Φ; but each ΥQ is finitely
generated and ΥQγ = ΥQ so we need only the ΥQi

.
Since Fo is abelian, it is now enough to show that any element of Fo is

of finite order. For Q ∈ MParΓ, consider the group NQ = Γ ∩NQ: we have

[NQ,NQ] ≤ Γ ∩ [NQ, NQ] = Γ ∩ UQ = ΥQ.

It suffices to prove that SpanR[NQ,NQ] = UQ, because then [NQ,NQ] is
of finite index in ΥQ so ΥQ/[NQ,NQ] is finite, of exponent kQ say. Then
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(ΥQ)
kQ ≤ [NQ,NQ] ≤ [Γ,Γ] and any element of ΥQΦ[Γ,Γ]/Φ[Γ,Γ] is of

order dividing kQ.
To prove SpanR[NQ,NQ] = UQ, note that the group NQ is 2-step nilpo-

tent, so [NQ,NQ] ⊂ UQ and hence SpanR[NQ,NQ] ⊆ UQ. For the other
inclusion, let β1, . . . , βm+2n ∈ nQ be such that bj = exp(βj) ∈ NQ generate
the lattice NQ. Then nQ = SpanR(β1, . . . , βm+2n) and

uQ = [nQ, nQ] = SpanR({[βi, βj ]}).

Here [βi, βj ] is the Lie bracket, but UQ is isomorphic to uQ via exp, so that
exp[βi, βj ] = [exp(βi), exp(βj)] = [bi, bj ]. Thus UQ = SpanR({[bi, bj ]}) ⊆
SpanR[NQ,NQ], as required.

For neat Γ, it is shown in [Sa] that (Γ/Υ)Fixo is trivial. Combining this
with (Γ/Υ)Fixo = ΛΥ/Υ from Lemma 4.4, one concludes that Λ ⊆ Υ. There-
fore F = Fo and rkZ(F ) = 0. ✷
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