Citation for published version:
Kasparian, AK \& Sankaran, GK 2018, 'Fundamental groups of toroidal compactifications', Asian Journal of Mathematics, vol. 22, no. 5, pp. 941-954. https://doi.org/10.4310/AJM.2018.v22.n5.a7

DOI:

10.4310/AJM.2018.v22.n5.a7

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

This is the Author Accepted Manuscript of an article published in final form in Asian Journal of Mathematics, and available via: http://dx.doi.org/10.4310/AJM.2018.v22.n5.a7

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Fundamental groups of toroidal compactifications

A.K. Kasparian*
Faculty of Mathematics and Informatics
Kliment Ohridski University of Sofia
5 James Bouchier blvd., 1164 Sofia, Bulgaria
G.K. Sankaran
Department of Mathematical Sciences
University of Bath, Bath BA2 7AY, UK

Abstract

We compute the fundamental group of a toroidal compactification of a Hermitian locally symmetric space D / Γ, without assuming either that Γ is neat or that it is arithmetic. We also give bounds for the first Betti number.

Many important complex algebraic varieties can be described as locally symmetric varieties. Examples include modular curves \mathbb{H} / Γ, where \mathbb{H} is the upper half-plane and $\Gamma<\operatorname{PSL}(2, \mathbb{Z})$; classifying spaces for Hodge structures or (in cases where a Torelli theorem holds) moduli spaces of polarised varieties, such as moduli of abelian varieties and of K3 surfaces; and special surfaces, such as Hilbert modular surfaces.

Locally symmetric varieties are in general non-compact, and we want to be able to compactify them and to study the geometry of the compactifications, especially the birational geometry, which does not depend on the choice of compactification. We work with toroidal compactifications as described in [AMRT].

Two basic birational invariants of a compact complex manifold X are the Kodaira dimension $\kappa(X)$ and the fundamental group $\pi_{1}(X)$. There is an extensive literature on computing Kodaira dimensions of specific locally symmetric varieties, which is usually very difficult.

Computing the fundamental group is easier, but there are some gaps in the literature which we aim to fill. We study the fundamental group of a toroidal compactification $(D / \Gamma)_{\Sigma}^{\prime}$ of a non-compact, not necessarily arithmetic quotient D / Γ by a lattice Γ. In general this is not a manifold, but

[^0]it is normal and can be chosen to have only quotient singularities. By [Ko, Sect 7] these do not affect the fundamental group.

The main result of the article is Theorem 4.3, describing $\pi_{1}\left((D / \Gamma)_{\Sigma}^{\prime}\right)$ as a quotient of the lattice Γ.

Acknowledgements: The first author is grateful to a referee for pointing out a flaw in a previous version and for bringing to her attention several references. We also thank Klaus Hulek and Xiuping Su for useful remarks.

1 Background

In this section we explain the background to the problem and establish some terminology and notation.

A symmetric space of non-compact type is a quotient $D=G / K$ of a connected non-compact semisimple Lie group G, assumed to be the real points of a linear algebraic group defined over \mathbb{Q}, by a connected maximal compact subgroup K of G. If the centre of K is not discrete, then D carries a Hermitian structure and hence the structure of a complex manifold, in fact a Kähler manifold [He, Theorem VIII.6.1.]).

By a lattice in G we mean a discrete subgroup of G of finite covolume with respect to Haar measure. A lattice Γ is said to be arithmetic if $\Gamma \cap G(\mathbb{Z})$ is of finite index in both Γ and $G(\mathbb{Z})$. It is said to be neat if the subgroup of \mathbb{C}^{*} generated by all eigenvalues of elements of Γ is torsion free.

A locally symmetric variety is the quotient of a Hermitian symmetric space D by a lattice $\Gamma<G$. If D / Γ is compact then Γ is said to be cocompact or uniform. Non-uniform lattices are very common, however, and it is this case that we are concerned with. By [BB] (for Γ arithmetic) and [Mok] these quotients are always algebraic varieties, not just complex analytic spaces.

Toroidal compactifications are constructed and described in detail in [AMRT], and it is shown in [Mok] that the construction applies to nonarithmetic lattices as well. In fact, for all $D=G / K$ except the complex ball $\mathbb{B}^{n}=\mathrm{SU}(n, 1) / \mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(1))$, Margulis [Ma] showed that an irreducible lattice $\Gamma<G$ is necessarily arithmetic. An extensive reference on toroidal and other compactifications of locally symmetric spaces D / Γ is the monograph [BJ] of Borel and Ji.

The first results on the fundamental group of a smooth compactification of a locally symmetric space concerned Siegel modular 3-folds, where $G=\operatorname{Sp}(2, \mathbb{R})$. These are moduli spaces of abelian surfaces and some such cases were studied in [HK], in [Kn] and in [HSa]. More generally, the fundamental group of a toroidal compactification of an arbitrary Hermitian locally symmetric variety is studied in [Sa].

Write $G=G_{1} \times \cdots \times G_{s}$ as a product of simple factors. We say that a parabolic proper subgroup $Q=Q_{1} \times \cdots \times Q_{s}<G$ is semimaximal if each Q_{j} is either G_{j} or a maximal parabolic subgroup of G_{j}. Denote by
$\operatorname{MPar}_{\Gamma}$ the set of Γ-rational semimaximal parabolic subgroups. It is shown in [Sa] that if $\Gamma<G$ is a neat arithmetic non-uniform lattice $\Gamma<G$, then a toroidal compactification $(D / \Gamma)_{\Sigma}^{\prime}$ satisfies $\pi_{1}(D / \Gamma)_{\Sigma}^{\prime}=\Gamma / \Upsilon$, where Υ is the subgroup of Γ generated by the centres of the unipotent radicals of all $Q \in \operatorname{MPar}_{\Gamma}$. Moreover, in [GHS] it is shown that there is a surjective group homomorphism $\Gamma \rightarrow \pi_{1}\left((D / \Gamma)_{\Sigma}^{\prime}\right)$, whose kernel contains all $\gamma \in \Gamma$ with a fixed point on D.

Let Λ be the subgroup of Γ generated by all $\gamma \in \Gamma \cap L_{Q}$ with $\gamma^{k} \in \Gamma \cap A_{Q}$ for some $k \in \mathbb{N}$ and some $Q \in \operatorname{MPar}_{\Gamma}$ with split component A_{Q} and Levi subgroup $L_{Q}=A_{Q} \rtimes M_{Q}$: from this definition, Λ is normal in Γ.

Our main result, Theorem 4.3, is that $\pi_{1}\left((D / \Gamma)_{\Sigma}^{\prime}\right)=\Gamma / \Lambda \Upsilon$ for an arbitrary (not necessarily arithmetic) non-uniform lattice $\Gamma<G$.

Here is a synopsis of the paper. Section 2 introduces some notation and terminology and describes the structure of Γ-rational parabolic subgroups, largely following [BJ]. Section 3 describes the toroidal compactifications $(D / \Gamma)_{\Sigma}^{\prime}$ and their coverings $\left(D / \Gamma_{o}\right)_{\Sigma}^{\prime}$ for normal subgroups (not necessarily lattices) $\Gamma_{o} \triangleleft \Gamma$ containing Υ. Section 4 comprises the main results of the article. We show in Proposition 4.4 that any element $\gamma \Upsilon \in \Gamma / \Upsilon$ with a fixed point on $(D / \Upsilon)_{\Sigma}^{\prime}$ has a representative $\gamma \in \Gamma$ with $\gamma \in \Gamma \cap L_{Q}$ and $\gamma^{k} \in \Gamma \cap A_{Q}$ for some $Q \in \operatorname{MPar}_{\Gamma}$ and $k \in \mathbb{N}$. This suffices to prove Theorem 4.3, and from that we deduce bounds on the first Betti numbers in Subsection 4.2.

2 Parabolic subgroups

We collect here some properties of Hermitian symmetric spaces $D=G / K$ of non-compact type and parabolic subgroups Q of G. For more details see [BJ, Chapter 1].

2.1 Langlands decomposition of a parabolic subgroup

Any parabolic subgroup Q of G has a Langlands decomposition [BJ, Equation (I.1.10)]

$$
Q=N_{Q} A_{Q} M_{Q}
$$

where N_{Q} is the unipotent radical of Q. We write $L_{Q}=A_{Q} M_{Q}$, the Levi subgroup of Q, and $R_{Q}=N_{Q} \rtimes A_{Q}$, the solvable radical of Q. The subgroup A_{Q} is called the split component of Q, and M_{Q} is a semisimple complement of R_{Q}. All these groups are uniquely defined once we choose a maximal compact subgroup K of G.

We denote by U_{Q} the centre of the unipotent radical N_{Q} of Q. Since N_{Q} is a 2-step nilpotent group, i.e. $\left[\left[N_{Q}, N_{Q}\right], N_{Q}\right]=0$, we have $U_{Q}=\left[N_{Q}, N_{Q}\right]$, the commutator subgroup. We may identify U_{Q} with its Lie algebra $\mathfrak{u}_{Q} \cong$ \mathbb{R}^{m}, for $m=\operatorname{dim}_{\mathbb{R}} U_{Q}$. The quotient $V_{Q}=N_{Q} / U_{Q}$ is also an abelian group,
naturally isomorphic to $\mathbb{C}^{n}\left[\right.$ BJ, (III.7.9)] and $N_{Q}=U_{Q} \rtimes V_{Q}$ is a semi-direct product of U_{Q} and V_{Q}.

The semi-simple complement M_{Q} of the solvable radical R_{Q} of Q is a product $M_{Q}=G_{Q, l}^{\prime} \times G_{Q, h}$ of semisimple groups $G_{Q, l}^{\prime}, G_{Q, h}$ of noncompact type [BJ, (III.7.8)].

This gives us the refined Langlands decomposition

$$
\begin{equation*}
Q=\left[\left(U_{Q} \rtimes V_{Q}\right) \rtimes A_{Q}\right] \rtimes\left(G_{Q, l}^{\prime} \times G_{Q, h}\right) \tag{1}
\end{equation*}
$$

of an arbitrary parabolic subgroup Q of G. Note also that $G=Q K$.
The group $A_{Q} \cong\left(\mathbb{R}_{>0}^{s},.\right)$ is an \mathbb{R}-split torus of G of dimension $s \leq r$, where $r=\mathrm{rk}_{\mathbb{R}} G$ is the real rank of G.

The symmetric space D has an embedding in a space \check{D}, the compact dual, on which G acts. The topological boundary of D then decomposes into complex analytic boundary components corresponding to parabolic subgroups Q : namely, Q is the normaliser of the boundary component $F(Q)$. See [BJ, Proposition I.5.28] or [AMRT, Proposition III.3.9.] for details.

If $F(P) \subseteq \overline{F(Q)}$ then $U(P) \supseteq U(Q)$ by [AMRT, Theorem III.4.8(i)].

2.2 Horospherical decomposition

For any parabolic subgroup we have $G=Q K$ [BJ, (I.1.20)], so Q acts transitively on D; moreover, $Q \cap K=M_{Q} \cap K$. As a result, the refined Langlands decomposition (1) of Q induces the refined horospherical decomposition

$$
\begin{equation*}
D=U_{Q} \times V_{Q} \times A_{Q} \times D_{Q, l}^{\prime} \times D_{Q, h} \tag{2}
\end{equation*}
$$

of D with $D_{Q . l}^{\prime}=G_{Q, l}^{\prime} / G_{Q, l}^{\prime} \cap K$ and $D_{Q, h}=G_{Q, h} / G_{Q, h} \cap K$ [BJ, Lemma III.7.9]). The equality in (2) is a real analytic diffeomorphism. The factors $D_{Q, h} \cong F(Q)$ and $D_{Q, l}^{\prime}$ are respectively Hermitian and Riemannian symmetric spaces of noncompact type.

The parabolic group $Q=\left(N_{Q} \rtimes A_{Q}\right) \rtimes\left(G_{Q, l}^{\prime} \times G_{Q, h}\right)$ acts on the Hermitian symmetric space $D=N_{Q} \times A_{Q} \times D_{Q, l}^{\prime} \times D_{Q, h}$ by the rule

$$
\begin{equation*}
\left(n_{0}, a_{0}, g_{0}^{\prime}, g_{0}\right)\left(n, a, z^{\prime}, z\right)=\left(\left(a_{0}, g_{0}^{\prime}, g_{0}\right)^{-1} n_{0}\left(a_{0}, g_{0}^{\prime}, g_{0}\right) n, a_{0} a, g_{0}^{\prime} z^{\prime}, g_{0} z\right) \tag{3}
\end{equation*}
$$

for $\left(n_{0}, a_{0}, g_{0}^{\prime}, g_{0}\right) \in\left(N_{Q} \rtimes A_{Q}\right) \rtimes\left(G_{Q, l}^{\prime} \times G_{Q, h}\right)$ and $\left(n, a, z^{\prime}, z\right) \in N_{Q} \times A_{Q} \times$ $D_{Q, l}^{\prime} \times D_{Q, h}$ (cf. [BJ, Equation (I.1.11)]).

We need more detail about this action. Since $U_{Q}=\left[N_{Q}, N_{Q}\right]$, we see that U_{Q} is a normal subgroup of Q, and the action of $A_{Q} \rtimes\left(G_{Q, l}^{\prime} \times G_{Q, h}\right)$ on N_{Q} and U_{Q} descends to $V_{Q} \cong N_{Q} / U_{Q}$. If $\alpha_{0}=\left(a_{0}, g_{0}^{\prime}, g_{0}\right) \in A_{Q}^{(,, \downarrow} \rtimes\left(G_{Q, l}^{\prime} \times G_{Q, h}\right)$ and $n=(u, v) \in U_{Q} \rtimes V_{Q}$ then the first term in the right-hand side of (3) is given by

$$
\alpha_{0}^{-1}\left(u_{0}, v_{0}\right) \alpha_{0}(u, v)=\left(\alpha_{0}^{-1} u_{0} \alpha_{0}+u, \alpha_{0}^{-1} v_{0} \alpha_{0}+v\right) .
$$

Altogether, the Q-action on D is given by

$$
\begin{equation*}
\left(u_{0}, v_{0}, \alpha_{0}\right)\left(u, v, \zeta^{\prime}, \zeta\right)=\left(\alpha_{0}^{-1} u_{0} \alpha_{0}+u, \alpha_{0}^{-1} v_{0} \alpha_{0}+v, a_{0} a, g_{0}^{\prime} \zeta^{\prime}, g_{0} \zeta\right) . \tag{4}
\end{equation*}
$$

2.3 Siegel domains

In [P-S] Pyatetskii-Shapiro realises the Hermitian symmetric spaces $D=$ G / K of noncompact type as Siegel domains of third kind. These are families of open cones, parametrised by products of complex Euclidean spaces and Hermitian symmetric spaces of noncompact type.

In the refined horospherical decomposition (2), the A_{Q}-orbit

$$
\begin{equation*}
C_{Q}=A_{Q} D_{Q, l}^{\prime}=\left\{\left(a, \zeta^{\prime}\right) \mid a \in A_{Q}, \zeta^{\prime} \in D_{Q, l}^{\prime}\right\} \tag{5}
\end{equation*}
$$

of the Riemannian symmetric space $D_{Q, l}^{\prime}$ is an open, strongly convex cone in $U_{Q} \cong \mathbb{R}^{m}$ [BJ, Lemma III.7.7]. Note that the reductive group $G_{Q, l}=$ $A_{Q} \rtimes G_{Q, l}^{\prime}$ acts transitively on C_{Q} since $C_{Q}=G_{Q, l} / G_{Q, l} \cap K=G_{Q, l} / G_{Q, l}^{\prime} \cap K$.

We embed C_{Q} in the complexification $U_{Q} \otimes_{\mathbb{R}} \mathbb{C} \cong\left(\mathbb{C}^{m},+\right)$ of U_{Q} as a subset $i C_{Q} \subset i U_{Q}$ with pure imaginary components. Combining with (2), one obtains a real analytic diffeomorphism of D onto the product

$$
\begin{equation*}
\left(U_{Q}+i C_{Q}\right) \times V_{Q} \times D_{Q, h} . \tag{6}
\end{equation*}
$$

which will be called the Siegel domain realisation of D associated with Q. See [AMRT] for the relation between (6) and the classical Siegel domain presentation of D.

In these coordinates, the action of Q (with notation as in (4)) is given by

$$
\begin{align*}
\left(u_{0}, v_{0}, a_{0}, g_{0}^{\prime}, g_{0}\right) & \left(u+i\left(a, \zeta^{\prime}\right), v, \zeta\right) \\
& =\left(\left(\alpha_{0}^{-1} u_{0} \alpha_{0}+u\right)+i\left(a_{0} a, g_{0}^{\prime} \zeta^{\prime}\right), \alpha_{0}^{-1} v_{0} \alpha_{0}+v, g_{0} \zeta\right) \tag{7}
\end{align*}
$$

where $\left(u+i\left(a, \zeta^{\prime}\right), v, \zeta\right) \in\left(U_{Q}+i C_{Q}\right) \times V_{Q} \times D_{Q, h}$.

3 Toroidal compactifications

We recall briefly enough detail on toroidal compactification for our immediate purposes: for full details we refer to [AMRT].

3.1 Admissible fans and collections

Suppose that $Q \in \operatorname{MPar}_{\Gamma}$: then $\Upsilon_{Q}=\Gamma \cap U_{Q} \cong \mathbb{Z}^{m}$ is a lattice in $U_{Q} \cong \mathbb{R}^{m}$. We say that a closed polyhedral cone $\sigma \subset U_{Q}$ is $\Upsilon_{Q \text {-rational if }} \sigma=\mathbb{R}_{\geq 0} u_{1}+$ $\cdots+\mathbb{R}_{\geq 0} u_{s}$ for some $u_{i} \in \Upsilon_{Q}$.

A fan (see $[\mathrm{Fu}]) \Sigma(Q)$ is a collection of closed polyhedral cones in U_{Q} such that any face of a cone in $\Sigma(Q)$ is also in $\Sigma(Q)$ and any two cones in $\Sigma(Q)$ intersect in a common face. It is Υ_{Q}-rational if all cones in $\Sigma(Q)$ are Υ_{Q}-rational.

The fan $\Sigma(Q)$ in U_{Q} is said to be Γ-admissible if it is Υ_{Q}-rational, it decomposes C_{Q} (that is, $\left.C_{Q} \subseteq \bigcup_{\sigma \in \Sigma(Q)} \sigma\right)$ and $\Gamma_{Q, l}=\Gamma \cap G_{Q, l}$ acts on $\Sigma(Q)$ with only finitely many orbits.

The lattice Γ acts on $\operatorname{MPar}_{\Gamma}$ by conjugation. We say that a family $\Sigma=$ $\{\Sigma(Q)\}_{Q \in \operatorname{MPar}_{\Gamma}}$ of Γ-admissible fans $\Sigma(Q)$ is a Γ-admissible family if:
(i) $\gamma \Sigma(Q)=\Sigma\left(Q^{\gamma}\right)$ for all $\gamma \in \Gamma, Q \in \operatorname{MPar}_{\Gamma}$ and
(ii) $\Sigma(Q)=\left\{\sigma \cap U_{Q} \mid \sigma \in \Sigma(P)\right\}$ whenever $F(P) \subseteq \overline{F(Q)}$, for $P, Q \in$ MPar $_{\Gamma}$.

3.2 Partial compactification at a cusp

For $Q \in \operatorname{MPar}_{\Gamma}$, the quotient $\mathbb{T}(Q)=\left(U_{Q} \otimes_{\mathbb{R}} \mathbb{C}\right) / \Upsilon_{Q} \cong\left(\mathbb{C}^{*}\right)^{m}$ is an algebraic torus over \mathbb{C}.

A Γ-admissible fan $\Sigma(Q)$ determines a toric variety $X_{\Sigma(Q)}$ that includes $\mathbb{T}(Q)$ as a dense Zariski-open subset. More precisely, $X_{\Sigma(Q)}$ is the disjoint union of $\mathbb{T}(Q)$ with the quotients $\mathbb{T}(Q)_{\sigma}$ of $\mathbb{T}(Q)$ by the complex algebraic tori $\operatorname{Span}_{\mathbb{C}}(\sigma) /\left(\operatorname{Span}_{\mathbb{C}}(\sigma) \cap \Upsilon_{Q}\right)$, generated by the cones $\sigma \in \Sigma(Q)$.

Bearing in mind that $\left(U_{Q}+i C_{Q}\right) / \Upsilon_{Q}$ is an open subset of $\mathbb{T}(Q)$, we take the closure $\overline{\left(U_{Q}+i C_{Q}\right) / \Upsilon_{Q}}$ of $\left(U_{Q}+i C_{Q}\right) / \Upsilon_{Q}$ in $X_{\Sigma(Q)}$ and define $Y_{\Sigma(Q)}$ as the interior of $\overline{\left(U_{Q}+i C_{Q}\right) / \Upsilon_{Q}}$ in $X_{\Sigma(Q)}$.

The Siegel domain presentation (6) of D associated with Q provides a real analytic diffeomorphism

$$
D / \Upsilon_{Q}=\left(U_{Q}+i C_{Q}\right) / \Upsilon_{Q} \times V_{Q} \times D_{Q, h}
$$

and the Γ-admissible fan $\Sigma(Q)$ defines a partial compactification

$$
\begin{equation*}
\left(D / \Upsilon_{Q}\right)_{\Sigma(Q)}=Z_{\Sigma(Q)}=Y_{\Sigma(Q)} \times V_{Q} \times D_{Q, h} \tag{8}
\end{equation*}
$$

By subdividing $\Sigma(Q)$ we may, and henceforth do, assume that $X_{\Sigma(Q)}$ and $Y_{\Sigma(Q)}$ are smooth: see $[\mathrm{Fu}]$.

To describe the Q-action on $Z_{\Sigma(Q)}$, consider the $\Upsilon_{Q \text {-covering map }}$
$\epsilon_{Q}: D=\left(U_{Q}+i C_{Q}\right) \times V_{Q} \times D_{Q, h} \longrightarrow D / \Upsilon_{Q}=\left(U_{Q}+i C_{Q}\right) / \Upsilon_{Q} \times V_{Q} \times D_{Q, h}$, given in the notation of (5) and (7) by

$$
\epsilon_{Q}\left(u+i\left(a, \zeta^{\prime}\right), v, \zeta\right)=\left(\mathbf{e}_{Q}\left(u+i\left(a, \zeta^{\prime}\right)\right), v, \zeta\right)
$$

where $\mathbf{e}_{Q}: U_{Q} \otimes \mathbb{C} \rightarrow \mathbb{T}(Q)$ is the canonical map with kernel Υ_{Q}. If we identify Υ_{Q} with \mathbb{Z}^{m} then we can identify \mathbf{e}_{Q} with exponentiation, i.e. $\mathbf{e}_{Q}\left(z_{1}, \ldots, z_{m}\right)=\left(e^{2 \pi i z_{1}}, \ldots, e^{2 \pi i z_{m}}\right)$ for $\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}$. According to (7), the action of $\left(u_{0}, v_{0}, \alpha_{0}\right) \in Q$ with $u_{0} \in U_{Q}, v_{0} \in V_{Q}, \alpha_{0}=\left(a_{0}, g_{0}^{\prime}, g_{0}\right) \in$ $A_{Q} \rtimes\left(G_{Q, l}^{\prime} \times G_{Q, h}\right)$ on $D / \Upsilon_{Q}=\epsilon_{Q}(D)$ is by the rule

$$
\begin{align*}
& \left(u_{0}, v_{0}, a_{0}, g_{0}^{\prime}, g_{0}\right)\left(\mathbf{e}_{Q}\left(u+i\left(a, \zeta^{\prime}\right)\right), v, \zeta\right) \\
& \quad=\left(\mathbf{e}_{Q}\left(\left(\alpha_{0}^{-1} u_{0} \alpha_{0}\right)+u+i\left(a_{0} a, g_{0}^{\prime} \zeta^{\prime}\right)\right), \alpha_{0}^{-1} v_{0} \alpha_{0}+v, g_{0} \zeta\right) \tag{9}
\end{align*}
$$

with $\alpha_{0}=\left(a_{0}, g_{0}^{\prime}, g_{0}\right)$. This Q-action extends by continuity to $Z_{\Sigma(Q)}$.

3.3 The gluing maps

For $P, Q \in \mathrm{MPar}_{\Gamma}$ with $F(P) \subseteq \overline{F(Q)}$, we are going to describe explicitly the holomorphic map $\mu_{P}^{Q}: Z_{\Sigma(Q)} \longrightarrow Z_{\Sigma(P)}$ of [AMRT, Lemma III.5.4].

According to [AMRT, Theorem III.4.8], U_{Q} is an \mathbb{R}-linear subspace of U_{P}. Therefore $\Upsilon_{Q}<\Upsilon_{P}$ and the identity map

$$
\operatorname{id}_{D}: D=\left(U_{Q}+i C_{Q}\right) \times V_{Q} \times D_{Q, h} \longrightarrow D=\left(U_{P}+i C_{P}\right) \times V_{P} \times D_{P, h}
$$

induces a holomorphic covering

$$
\mu_{P}^{Q}: D / \Upsilon_{Q}=\left(U_{Q}+i C_{Q}\right) / \Upsilon_{Q} \times V_{Q} \times D_{Q, h} \longrightarrow D / \Upsilon_{P}
$$

given by $\mu_{P}^{Q}\left(\Upsilon_{Q} x\right)=\Upsilon_{P} x$.
The inclusions $U_{Q} \otimes \mathbb{C} \subset U_{P} \otimes \mathbb{C}$ and $\Upsilon_{Q}<\Upsilon_{P}$ induce a homomorphism $\mu_{P, 1}^{Q}: \mathbb{T}(Q) \longrightarrow \mathbb{T}(P)$, which extends to $\mu_{P, 1}^{Q}: X_{\Sigma(Q)} \longrightarrow X_{\Sigma(P)}$, mapping $Y_{\Sigma(Q)}$ into $Y_{\Sigma(P)} \subset \overline{\left(U_{P}+i C_{P}\right) / \Upsilon_{P}}$. In this way, one obtains a holomorphic gluing map

$$
\mu_{P}^{Q}: Z_{\Sigma(Q)}=Y_{\Sigma(Q)} \times V_{Q} \times D_{Q, h} \longrightarrow Y_{\Sigma(P)} \times V_{P} \times D_{P, h}=Z_{\Sigma(P)},
$$

given by

$$
\mu_{P}^{Q}\left(\lim _{t \rightarrow \infty}\left(y_{t}, v, z\right)\right)=\lim _{t \rightarrow \infty} \mu_{P}^{Q}\left(y_{t}, v, z\right)=\lim _{t \rightarrow \infty}\left(y_{t}+\Upsilon_{P} / \Upsilon_{Q}, v, z\right)
$$

where $y_{t} \in\left(U_{Q}+i C_{Q}\right) / \Upsilon_{Q}$ for $t \in \mathbb{R}$ tends to some point $\lim _{t \rightarrow \infty} y_{t} \in Y_{\Sigma(Q)}$. From this definition, μ_{Q}^{Q} is the identity on $Z_{\Sigma(Q)}=\left(D / \Upsilon_{Q}\right)_{\Sigma(Q)}$.

3.4 Toroidal compactifications and coverings

We recall the construction of a toroidal compactification $(D / \Gamma)_{\Sigma}^{\prime}$ of a locally symmetric variety D / Γ, associated with a Γ-admissible family $\Sigma=$ $\{\Sigma(Q)\}_{Q \in \operatorname{MPar}_{\Gamma}}$ of fans $\Sigma(Q)$ in U_{Q}. In the notation of subsection 3.2, consider the disjoint union $\coprod_{Q \in \mathrm{MPar}_{\Gamma}} Z_{\Sigma(Q)}$.

We denote by Υ the subgroup of Γ generated by Υ_{Q} for all $Q \in \operatorname{MPar}_{\Gamma}$. Suppose that Γ_{o} is a normal subgroup of Γ containing Υ. Its action on D induces an equivalence relation $\sim_{\Gamma_{o}}$ on $\coprod_{Q \in \operatorname{MPar}_{\Gamma}} Z_{\Sigma(Q)}$, as in the proof of [Sa, Theorem 2.1]: for $\Gamma_{o}=\Gamma$ it is described in [AMRT, III.5]. Let $z_{1} \in$ $Z_{\Sigma\left(Q_{1}\right)}$ and $z_{2} \in Z_{\Sigma\left(Q_{2}\right)}$: then $z_{1} \sim_{\Gamma_{o}} z_{2}$ if there exist $\gamma \in \Gamma_{o}, Q \in \operatorname{MPar}_{\Gamma}$ and $z \in Z_{\Sigma(Q)}$, such that $\overline{F(Q)} \supseteq F\left(Q_{1}\right), \overline{F(Q)} \supseteq F\left(Q_{2}^{\gamma}\right), \mu_{Q_{1}}^{Q}(z)=z_{1}$ and $\mu_{Q_{2}^{\gamma}}^{Q}(z)=\gamma z_{2}$.

Then we put

$$
\left(D / \Gamma_{o}\right)_{\Sigma}^{\prime}=\left(\coprod_{Q \in \operatorname{MPar}_{\Gamma}} Z_{\Sigma(Q)}\right) / \sim_{\Gamma_{o}} .
$$

In [Sa] this is used to construct the (Γ / Υ)-Galois covering $(D / \Upsilon)_{\Sigma}^{\prime}$ of $(D / \Gamma)_{\Sigma}^{\prime}$ and show that $(D / \Upsilon)_{\Sigma}^{\prime}$ is a simply connected complex analytic space. Notice that Γ_{o} is not required to be a lattice, and that $(D / \Upsilon)_{\Sigma}^{\prime}$ is not compact.

In the proof of [Sa, Theorem 1.5] it is shown that $Z_{\Sigma(Q)}$, which are diffeomorphic to $Y_{\Sigma(Q)} \times V_{Q} \times D_{Q, h}$ for all $Q \in \operatorname{MPar}_{\Gamma}$, are simply connected. Further, the proof of [Sa, Theorem 2.1] establishes that the natural coverings $D / \Upsilon_{Q} \rightarrow D / \Upsilon$ extend to open holomorphic maps $\pi_{\Sigma(Q)}^{U}: Z_{\Sigma(Q)} \rightarrow(D / \Upsilon)_{\Sigma}^{\prime}$, which are biholomorphic onto their images.

4 The fundamental group and first Betti number

4.1 The fundamental group

We begin by stating two theorems that summarise the results from [Sa] and [GHS] on the fundamental group of a toroidal compactification $(D / \Gamma)_{\Sigma}^{\prime}$ of a quotient of $D=G / K$ by an arithmetic lattice $\Gamma<G$.

Theorem 4.1 [Sa, Corollary 1.6, Theorem 2.1] Let $D=G / K$ be a Hermitian symmetric space and let Γ be a non-uniform arithmetic lattice in G. Then the fundamental group $\pi_{1}\left((D / \Gamma)_{\Sigma}^{\prime}\right)$ of a toroidal compactification $(D / \Gamma)_{\Sigma}^{\prime}$ of D / Γ is a quotient group of Γ / Υ. In particular, if Γ is a neat arithmetic non-uniform lattice then $\pi_{1}\left((D / \Gamma)_{\Sigma}^{\prime}\right)=\Gamma / \Upsilon$.

The above is a more carefully stated version of the results in [Sa]. Recall that Υ is the group generated by Υ_{Q} for all $Q \in \operatorname{MPar}_{\Gamma}$. In a similar style, we define Λ to be the subgroup of Γ generated by all $\gamma \in \Gamma \cap L_{Q}$ such that $\gamma^{k} \in A_{Q}$ for some $k \in \mathbb{N}$ and some $Q \in \operatorname{MPar}_{\Gamma}$.

Theorem 4.2 [GHS, Lemma 5.2, Proposition 5.3] Under the conditions of Theorem 4.1, there is a commutative diagram

of surjective group homomorphisms, such that $\operatorname{ker} \varphi$ and $\operatorname{ker} \psi$ contain all $\gamma \in \Gamma$ with a fixed point on D.

The following is the main result of the present paper. We use the notation from Subsection 2.1.

Theorem 4.3 Let $D=G / K$ be a Hermitian symmetric space and let Γ be a non-uniform lattice in G. Then for any Γ-admissible family Σ, the toroidal compactification $(D / \Gamma)_{\Sigma}^{\prime}$ has fundamental group

$$
\pi_{1}\left((D / \Gamma)_{\Sigma}^{\prime}\right)=\Gamma / \Lambda \Upsilon
$$

Proof. According to $[\mathrm{Sa}],(D / \Upsilon)_{\Sigma}^{\prime}$ is a path connected simply connected locally compact topological space and Γ / Υ acts properly discontinuously on $(D / \Upsilon)_{\Sigma}^{\prime}$ by homeomorphisms. More precisely, $\gamma \Upsilon:(\Upsilon q) \mapsto \Upsilon \gamma q$ defines a Γ / Υ-action on D / Υ, which extends continuously to $(D / \Upsilon)_{\Sigma}^{\prime}$. The quotient space $(D / \Upsilon)_{\Sigma}^{\prime} /(\Gamma / \Upsilon)=(D / \Gamma)_{\Sigma}^{\prime}$ is the toroidal compactification of D / Γ associated with Σ. By a theorem of Armstrong [Ar]

$$
\pi_{1}\left((D / \Gamma)_{\Sigma}^{\prime}\right)=(\Gamma / \Upsilon) /(\Gamma / \Upsilon)_{o}^{\text {Fix }}
$$

where $(\Gamma / \Upsilon)_{o}^{\text {Fix }}$ is the subgroup of Γ / Υ generated by elements $\gamma \Upsilon$ with a fixed point on $(D / \Upsilon)_{\Sigma}^{\prime}$.

Theorem 4.3 therefore follows from Proposition 4.4, which establishes that $(\Gamma / \Upsilon)_{o}^{\text {Fix }}=\Lambda \Upsilon / \Upsilon$.

In order to describe the action of Γ / Υ on $(D / \Upsilon)_{\Sigma}^{\prime}$ note that the Γ-action on MPar_{Γ} by conjugation determines holomorphic maps $\gamma: Z_{\Sigma(Q)} \rightarrow Z_{\Sigma\left(Q^{\gamma}\right)}$ for all $\gamma \in \Gamma$ and $Q \in \operatorname{MPar}_{\Gamma}$. Any $\gamma \in \Gamma$ transforms the \sim_{Υ}-equivalence class of $z \in Z_{\Sigma(Q)}$ into the \sim_{Υ}-equivalence class of γz, giving a biholomorphic map $\gamma:(D / \Upsilon)_{\Sigma}^{\prime} \longrightarrow(D / \Upsilon)_{\Sigma}^{\prime}$. By definition of \sim_{Υ}, all $\gamma \in \Upsilon$ act trivially on $(D / \Upsilon)_{\Sigma}^{\prime}$ and the Γ-action on $(D / \Upsilon)_{\Sigma}^{\prime}$ reduces to a (Γ / Υ)-action

$$
(\Gamma / \Upsilon) \times(D / \Upsilon)_{\Sigma}^{\prime} \longrightarrow(D / \Upsilon)_{\Sigma}^{\prime}
$$

given by

$$
\begin{equation*}
(\gamma \Upsilon) \pi_{\Sigma(Q)}^{U}(z)=\pi_{\Sigma\left(Q^{\gamma}\right)}^{U}(\gamma z) \tag{10}
\end{equation*}
$$

for $\gamma \Upsilon \in \Gamma / \Upsilon$ and $z \in Z_{\Sigma(Q)}$.
Proposition 4.4 In the notations from Theorem 4.3, a coset $\gamma_{0} \Upsilon \in \Gamma / \Upsilon$ has a fixed point on $(D / \Upsilon)_{\Sigma}^{\prime}$ if and only if for some $k \in \mathbb{N}$ and some $Q \in$ $\operatorname{MPar}_{\Gamma}$, there is a representative $\gamma \in \Gamma \cap L_{Q}$ of $\gamma_{0} \Upsilon=\gamma \Upsilon$ with $\gamma^{k} \in \Gamma \cap A_{Q}$. Hence the subgroup $(\Gamma / \Upsilon)_{o}^{\mathrm{Fix}}$ of Γ / Υ satisfies $(\Gamma / \Upsilon)_{o}^{\mathrm{Fix}}=\Lambda \Upsilon / \Upsilon$.

Proof. We first prove the "only if" part of the statement.
We claim that if $\gamma_{0} \Upsilon \in \Gamma / \Upsilon$ has a fixed point on

$$
(D / \Upsilon)_{\Sigma}^{\prime}=\left(\coprod_{P \in \operatorname{MPar}_{\Gamma}} Z_{\Sigma(P)}\right) / \sim_{\Upsilon}
$$

then there exist $\gamma_{1} \in \gamma_{0} \Upsilon$ and $y \in Z_{\Sigma(Q)}$ for some $Q \in \operatorname{MPar}_{\Gamma}$, such that $\gamma_{1} y=y$. That is, if a coset of Υ has a fixed point $\bmod \Upsilon$ then some representative of that coset has a fixed point "on the nose".

To prove this, notice that if $z_{0} \sim_{\Upsilon} \gamma_{0} z_{0}$ for some $z_{0} \in Z_{\Sigma(P)}$, then there exist $Q_{1} \in \operatorname{MPar}_{\Gamma}, z_{1} \in Z_{\Sigma\left(Q_{1}\right)}$ and $u_{1} \in \Upsilon$ such that $F(P) \subseteq \overline{F\left(Q_{1}\right)}$ and $\mu_{P}^{Q_{1}}\left(z_{1}\right)=z_{0}$, and $F\left(P^{u_{1} \gamma_{0}}\right) \subseteq \overline{F\left(Q_{1}\right)}$ and $\mu_{P u_{1} \gamma_{0}}^{Q_{1}}\left(z_{1}\right)=u_{1} \gamma_{0} z_{0}$.

If $F\left(Q_{1}\right)=F(P)$, then $Q_{1}=P$ and in (10) we have $\mu_{P{ }^{u_{1}} \gamma_{0}}^{Q_{1}}=\mu_{P}^{Q_{1}}=$ $\operatorname{id}_{Z_{\Sigma(P)}}$ and $z_{0}=u_{1} \gamma_{0} z_{0}$. Since Υ is a normal subgroup of Γ, we may take $\gamma_{1}=u_{1} \gamma_{0} \in \Upsilon \gamma_{0}=\gamma_{0} \Upsilon$. In particular, this shows that the claim is true if $F(P)$ is of maximal dimension.

Now we conclude the proof of the claim by induction on $\operatorname{codim} F(P)$: suppose that the claim holds for all $P^{\prime} \in \mathrm{MPar}_{\Gamma}$ with $\operatorname{dim} F\left(P^{\prime}\right)>\operatorname{dim} F(P)$, and take Q_{1} as above. If $F\left(Q_{1}\right)=F(P)$ we are done. If not, then $z_{0} \sim \Upsilon z_{1}$ and $\gamma_{0} z_{0} \sim \Upsilon \gamma_{0} z_{1}$, because $\mu_{P \gamma_{0}}^{Q_{0}}\left(\gamma_{0} z_{1}\right)=\gamma_{0} z_{0}$. On the other hand, $\gamma_{0} z_{0} \sim_{\Upsilon} z_{1}$, so $z_{1} \sim_{\Upsilon} \gamma_{0} z_{1}$ because \sim_{Υ} is an equivalence relation. Thus $\gamma_{0} \Upsilon$ has the fixed point $z_{1} \in Z_{\Sigma\left(Q_{1}\right)}$ so the claim follows by taking $P^{\prime}=Q_{1}$.

Suppose then that $\gamma_{1} \in \Gamma$ has a fixed point $y \in Z_{\Sigma(Q)}$ for some $Q \in$ MPar $_{\Gamma}$. Then $y=\gamma_{1} y \in Z_{\Sigma\left(Q^{\gamma_{1}}\right)}$ implies that $Q^{\gamma_{1}}=Q$; but the parabolic subgroup Q of G coincides with its normaliser in G, so $\gamma_{1} \in Q$. We may therefore use the Langlands decomposition of Q and write

$$
\gamma_{1}=\left(u_{1}, v_{1}, a_{1}, g_{1}^{\prime}, g_{1}\right) \in\left[\left(U_{Q} \rtimes V_{Q}\right) \rtimes A_{Q}\right] \rtimes\left(G_{Q, l}^{\prime} \times G_{Q, h}\right) .
$$

As above we take

$$
\alpha_{1}=\left(a_{1}, g_{1}^{\prime}, g_{1}\right) \in L_{Q}=A_{Q} \rtimes\left(G_{Q, l}^{\prime} \times G_{Q, h}\right) .
$$

Any element of $X_{\Sigma(Q)}$ may be written as a limit of elements of $\mathbb{T}(Q)$, as $\lim _{t \rightarrow \infty}\left(\mathbf{e}_{Q}\left(u_{t}+i x_{t}\right)\right)$ and if the element is in $Y_{\Sigma(Q)}$ then we may take $x_{t} \in C_{Q}$. So

$$
y=\left(\lim _{t \rightarrow \infty} \mathbf{e}_{Q}\left(u_{t}+i x_{t}\right), v, \zeta\right) \in Y_{\Sigma(Q)} \times V_{Q} \times D_{Q, h} .
$$

Then by (9) and the continuity of the Q-action on $\left(D / \Upsilon_{Q}\right)_{\Sigma(Q)}$

$$
\gamma_{1} y=\left(\lim _{t \rightarrow \infty} \mathbf{e}_{Q}\left(\left(\alpha_{1}^{-1} u_{1} \alpha_{1}\right)+u_{t}+i\left(a_{1}, g_{1}^{\prime}\right) x_{t}\right), \alpha_{1}^{-1} v_{1} \alpha_{1}+v, g_{1} \zeta\right)=y
$$

Comparing the V_{Q} coordinates gives $\alpha_{1}^{-1} v_{1} \alpha_{1}=0 \in V_{Q} \cong \mathbb{C}^{n}$ and hence $v_{1}=0$. From the last component we get $g_{1} \zeta=\zeta$.

From the first component we get the equation in $X_{\Sigma(Q)}$

$$
\lim _{t \rightarrow \infty} \mathbf{e}_{Q}\left(\alpha_{1}^{-1} u_{1} \alpha_{1}+u_{t}+i\left(a_{1}, g_{1}^{\prime}\right) x_{t}\right)=\lim _{t \rightarrow \infty} \mathbf{e}_{Q}\left(u_{t}+i x_{t}\right)
$$

and this holds exactly when $\alpha_{1}^{-1} u_{1} \alpha_{1} \in \Upsilon_{Q}=\operatorname{ker} \mathbf{e}_{Q}$ and $\lim _{t \rightarrow \infty} i\left(a_{1}, g_{1}^{\prime}\right) x_{t}=$ $\lim _{t \rightarrow \infty} i x_{t}$. Therefore we may take $\gamma^{\prime}=\left(-\alpha_{1}^{-1} u_{1} \alpha_{1}, 0\right.$, id $)$ and $\gamma=\gamma_{1} \gamma^{\prime} \in \gamma_{0} \Upsilon$, and we compute

$$
\begin{aligned}
\gamma & =\left(u_{1}, 0, \alpha_{1}\right)\left(-\alpha_{1}^{-1} u_{1} \alpha_{1}, 0, \mathrm{id}\right) \\
& =\left(\alpha_{1}^{-1} u_{1} \alpha_{1}-\alpha_{1}^{-1} u_{1} \alpha_{1}, \alpha_{1}^{-1} 0 \alpha_{1}+0, \alpha_{1}\right) \\
& =\left(0,0, \alpha_{1}\right) \in \Gamma \cap L_{Q} .
\end{aligned}
$$

The remaining assertion of the "only if" part is that γ is torsion $\bmod A_{Q}$. If γ has a fixed point y and $y \in D / \Upsilon_{Q}$ then γ belongs to the compact stabiliser of y in the isometry group G of D and hence γ is torsion. If $y \in Z_{\Sigma(Q)} \backslash\left(D / \Upsilon_{Q}\right)$ we need to look at g_{1} and g_{1}^{\prime}. For g_{1} what we need is immediate: it is in the stabiliser of $\zeta \in D_{Q, h}$ and isotropy groups in symmetric spaces are always torsion, so g_{1} is of finite order: by replacing γ with a power we may assume that g_{1} is the identity.

For the Riemannian part g_{1}^{\prime} a little more work is needed. The element γ has a fixed point $y^{\prime}=\lim _{t \rightarrow \infty} \mathbf{e}_{Q}\left(u_{t}+i x_{t}\right) \in X_{\Sigma(Q)} \backslash \mathbb{T}(Q)$, so $y^{\prime} \in \mathbb{T}(Q)_{\sigma}$ for some unique $\sigma \in \Sigma(Q)$. Therefore γ preserves σ. If we assume, as we may do, that Q has been chosen so as to maximise $\operatorname{dim} F(Q)$ (see [AMRT, Lemma III.5.5]), then $\sigma \cap C_{Q} \neq \emptyset$ (remember that C_{Q} is an open cone but σ is closed): this follows from [AMRT, Theorem III.4.8(ii)].

Since γ preserves σ, it permutes the top-dimensional cones of which σ is a face: there are finitely many of these as long as $\sigma \cap C_{Q} \neq \emptyset$. Therefore some power of γ preserves a top-dimensional cone, so we may as well assume that σ is top-dimensional. The action of γ is thus determined by its action on $\sigma=\sum_{i=1}^{q} \mathbb{R}_{\geq 0} u_{i}$.

Thus γ permutes the rays $\mathbb{R}_{\geq 0} u_{i}$ (it may not fix them pointwise) and therefore some power, in fact $\gamma^{q!}$, fixes all the rays, so we may as well assume that γ fixes all the rays. In particular it fixes a rational basis of U_{Q} up to scalars. Now consider the real subgroup of Q that fixes that basis up to scalars. Its identity component is a torus, and because the u_{i} are defined over \mathbb{Q} it is \mathbb{R}-split (in fact \mathbb{Q}-split) and therefore it is contained in the maximal \mathbb{R}-split torus in Q, which is A_{Q}. So some power of γ is in A_{Q}, as required.

For the converse (the "if" part), suppose that $\gamma \Upsilon \in \Gamma / \Upsilon$ with $\gamma \in \Gamma \cap L_{Q}$ and $\gamma^{k}=a \in A_{Q}$ for some $Q \in \operatorname{MPar}_{\Gamma}$. Since $\gamma \in Q$ it preserves the cone $C=C_{Q}$. By the Brouwer fixed point theorem, γ preserves a ray ρ^{\prime} in \bar{C}_{Q}.

We claim that there exists a boundary component $F(P)$, for some $P \in$ $\operatorname{MPar}_{\Gamma}$, fixed by γ such that γ preserves a ray $\rho=\mathbb{R}_{>0} u_{\rho}$ in the interior of C_{P}. This is trivial if $\operatorname{dim} C_{Q}=1$. We shall proceed by induction on $\operatorname{dim} C_{Q}$.

The ray ρ^{\prime} is preserved by a, with eigenvalue λ say, and ρ^{\prime} belongs to a unique real boundary component C^{\prime} of C, since \bar{C} is the disjoint union of its real boundary components by [AMRT, Proposition II.3.1]. Let H_{λ} be the
λ-eigenspace of a in U_{Q}. Then $H_{\lambda} \cap \bar{C}$ is a boundary component of C and contains ρ^{\prime}, so $H_{\lambda} \cap \bar{C}=C^{\prime}$. Thus the normaliser of C^{\prime} in $\operatorname{Aut}(C)$ is rational because it is the normaliser of the rational linear subspace H_{λ}. Therefore by [AMRT, Corollary II.3.22], C^{\prime} is a rational boundary component. But γ preserves C^{\prime}, and $\operatorname{dim} C^{\prime}<\operatorname{dim} C$.

We may write $\gamma=\left(a_{1}, g_{0}^{\prime}, g_{0}\right)$ for some $a_{1} \in A_{Q}$, because $L_{Q}=A_{Q} \rtimes$ $\left(G_{Q, l}^{\prime} \times G_{Q, h}\right)$. Then $g_{0} \in G_{Q, h}$ is of finite order and has a fixed point $\zeta \in D_{Q, h}$, and we may assume that γ preserves $\rho=\mathbb{R}_{>0} u_{\rho}$ in C_{Q}.

Writing $\mathbf{e}_{Q}\left(u+i \infty_{\rho}\right)$ for $\lim _{t \rightarrow \infty} \mathbf{e}_{Q}\left(u+i\left(t u_{\rho}\right)\right) \in X_{\Sigma(Q)}$, the point

$$
z=\left(\mathbf{e}_{Q}\left(0+i \infty_{\rho}\right), 0, \zeta\right) \in Z_{\Sigma(Q)}=Y_{\Sigma(Q)} \times V_{Q} \times D_{Q, h}
$$

is fixed by $\gamma=\left(0_{m}, 0_{n}, a_{1}, g_{0}^{\prime}, g_{0}\right) \in\left(\left(U_{Q} \rtimes V_{Q}\right) \rtimes A_{Q}\right) \times\left(G_{Q, l}^{\prime} \times G_{Q, h}\right)$, since, writing $\alpha_{0}=\left(a_{1}, g_{0}^{\prime}, g_{0}\right) \in L_{Q}=A_{Q} \rtimes\left(G_{Q, l}^{\prime} \times G_{Q, h}\right)$, we have

$$
\begin{aligned}
\gamma z & =\left(\mathbf{e}_{Q}\left(\alpha_{0}^{-1} 0_{m} \alpha_{0}+i a_{1} \infty_{\rho}\right), \alpha_{0}^{-1} 0_{n} \alpha_{0}, g_{0} \zeta\right) \\
& =\left(\mathbf{e}_{Q}\left(0+i \infty_{\rho}\right), 0, \zeta\right)=z
\end{aligned}
$$

Therefore $\gamma \Upsilon$ fixes the image of z in $(D / \Upsilon)_{\Sigma}^{\prime}$ and $\Lambda \Upsilon / \Upsilon \subseteq(\Gamma / \Upsilon)_{o}^{\text {Fix }}$. That concludes the proof of Proposition 4.4.

4.2 The first Betti number

We can use Theorem 4.3 to give bounds on the first Betti number of the toroidal compactifications.

Corollary 4.5 Suppose that $D=G / K$ is a Hermitian symmetric space of non-compact type without 1-dimensional factors and Γ is a non-uniform lattice of G. Let r be the real rank of G and h be the number of Γ-conjugacy classes of Γ-rational semimaximal parabolic subgroups of G. Then

$$
\begin{equation*}
\operatorname{rk}_{\mathbb{Z}} H_{1}(D / \Gamma, \mathbb{Z})-h r \leq \operatorname{rk}_{\mathbb{Z}} H_{1}\left((D / \Gamma)_{\Sigma}^{\prime}, \mathbb{Z}\right) \leq \operatorname{rk}_{\mathbb{Z}} H_{1}(D / \Gamma, \mathbb{Z}) \tag{11}
\end{equation*}
$$

If Γ is neat then

$$
\operatorname{rk}_{\mathbb{Z}} H_{1}\left((D / \Gamma)_{\Sigma}^{\prime}, \mathbb{Z}\right)=\operatorname{rk}_{\mathbb{Z}} H_{1}(D / \Gamma, \mathbb{Z})
$$

Proof. For an arbitrary group \mathfrak{G} we denote by ab \mathfrak{G} its abelianisation $\operatorname{ab}(\mathfrak{G})=\mathfrak{G} /[\mathfrak{G}, \mathfrak{G}]$. If S is a complex analytic space then $H_{1}(S, \mathbb{Z})=$ ab $\pi_{1}(S)$.

If \mathfrak{H} is a normal subgroup of \mathfrak{G} then $[\mathfrak{G} / \mathfrak{H}, \mathfrak{G} / \mathfrak{H}]=[\mathfrak{G}, \mathfrak{G}] \mathfrak{H} / \mathfrak{H}$ and

$$
\operatorname{ab}(\mathfrak{G} / \mathfrak{H})=(\mathfrak{G} / \mathfrak{H}) /([\mathfrak{G}, \mathfrak{G}] \mathfrak{H} / \mathfrak{H}) \cong \mathfrak{G} /[\mathfrak{G}, \mathfrak{G}] \mathfrak{H}=\mathfrak{G} / \mathfrak{H}[\mathfrak{G}, \mathfrak{G}] .
$$

Therefore by Theorem 4.3

$$
H_{1}\left((D / \Gamma)_{\Sigma}^{\prime}, \mathbb{Z}\right) \cong \operatorname{ab}(\Gamma / \Upsilon \Lambda) \cong \Gamma / \Lambda \Upsilon[\Gamma, \Gamma]
$$

On the other hand, D is a path connected, simply connected locally compact space with a properly discontinuous action of Γ by homeomorphisms. Let Φ be the subgroup of Γ generated by the elements $\gamma \in \Gamma$ with a fixed point on D. By [Ar], the fundamental group of D / Γ is $\pi_{1}(D / \Gamma)=\Gamma / \Phi$. Therefore $H_{1}(D / \Gamma, \mathbb{Z}) \cong \mathrm{ab}(\Gamma / \Phi) \cong \Gamma / \Phi[\Gamma, \Gamma]$ and

$$
H_{1}\left((D / \Gamma)_{\Sigma}^{\prime}, \mathbb{Z}\right) \cong(\Gamma / \Phi[\Gamma, \Gamma]) /(\Lambda \Upsilon[\Gamma, \Gamma] / \Phi[\Gamma, \Gamma]) \cong H_{1}(D / \Gamma, \mathbb{Z}) / F
$$

for the abelian group

$$
F=\Lambda \Upsilon[\Gamma, \Gamma] / \Phi[\Gamma, \Gamma]<\Gamma / \Phi[\Gamma, \Gamma] \cong H_{1}(D / \Gamma, \mathbb{Z})
$$

In particular,

$$
\operatorname{rk}_{\mathbb{Z}} H_{1}(D / \Gamma, \mathbb{Z})=\operatorname{rk}_{\mathbb{Z}} H_{1}\left((D / \Gamma)_{\Sigma}^{\prime}, \mathbb{Z}\right)+\operatorname{rk}_{\mathbb{Z}} F
$$

To verify (11), it suffices to show that $F_{o}=\Phi \Upsilon[\Gamma, \Gamma] / \Phi[\Gamma, \Gamma]$ is a finite subgroup of F and that $\operatorname{rk}_{\mathbb{Z}}(F)=\operatorname{rk}_{\mathbb{Z}}\left(F / F_{o}\right) \leq h r$.

We check the rank condition first. For any $Q \in \operatorname{MPar}_{\Gamma}$ we define Λ_{Q} to be the subgroup of $\Gamma \cap L_{Q}$ generated by all $\gamma \in \Gamma \cap L_{Q}$ such that $\gamma^{k} \in A_{Q}$ for some $k \in \mathbb{N}$ (i.e. the elements that are torsion $\bmod A_{Q}$). We define Λ_{Q}^{A} to be the subgroup of $\Gamma \cap A_{Q}$ of elements that arise in this way: that is, Λ_{Q}^{A} is the group generated by $\left\{\gamma^{k} \in \Gamma \cap A_{Q} \mid \gamma \in \Lambda_{Q}, k \in \mathbb{N}\right\}$.

Consider the finitely generated abelian group $\mathfrak{L}_{Q}=\Lambda_{Q} \Upsilon[\Gamma, \Gamma] / \Phi \Upsilon[\Gamma, \Gamma]$ and the subgroup $\mathfrak{A}_{Q}=\Lambda_{Q}^{A} \Upsilon[\Gamma, \Gamma] / \Phi \Upsilon[\Gamma, \Gamma]$. These both have the same rank, because the quotient $\mathfrak{L}_{Q} / \mathfrak{A}_{Q}$ is abelian and generated by torsion elements so it is finite.

Choose representatives Q_{1}, \ldots, Q_{h} for each Γ-conjugacy class in $\operatorname{MPar}_{\Gamma}$. Then F / F_{o} is generated by the $\mathfrak{L}_{Q_{i}}$, and therefore

$$
\mathrm{rk}_{\mathbb{Z}}(F)=\operatorname{rk}_{\mathbb{Z}}\left(F / F_{o}\right) \leq \sum_{i=1}^{h} \operatorname{rk}_{\mathbb{Z}}\left(\mathfrak{L}_{Q_{i}}\right)=\sum_{i=1}^{h} \operatorname{rk}_{\mathbb{Z}}\left(\mathfrak{A}_{Q_{i}}\right)
$$

However, \mathfrak{A}_{Q} is a discrete subgroup of A_{Q}, so $\mathrm{rk}_{\mathbb{Z}} \mathfrak{A}_{Q}<\mathrm{rk}_{\mathbb{R}} A_{Q} \leq r=$ $\mathrm{rk}_{\mathbb{R}}(G)$, and this gives the bound on $\mathrm{rk}_{\mathbb{Z}}(F)$.

It remains to show that F_{o} is finite. It is certainly finitely generated, because it is generated by all $\Upsilon_{Q}[\Gamma, \Gamma] \Phi /[\Gamma, \Gamma] \Phi$; but each Υ_{Q} is finitely generated and $\Upsilon_{Q^{\gamma}}=\Upsilon_{Q}$ so we need only the $\Upsilon_{Q_{i}}$.

Since F_{o} is abelian, it is now enough to show that any element of F_{o} is of finite order. For $Q \in \operatorname{MPar}_{\Gamma}$, consider the group $\mathbf{N}_{Q}=\Gamma \cap N_{Q}$: we have

$$
\left[\mathbf{N}_{Q}, \mathbf{N}_{Q}\right] \leq \Gamma \cap\left[N_{Q}, N_{Q}\right]=\Gamma \cap U_{Q}=\Upsilon_{Q}
$$

It suffices to prove that $\operatorname{Span}_{\mathbb{R}}\left[\mathbf{N}_{Q}, \mathbf{N}_{Q}\right]=U_{Q}$, because then $\left[\mathbf{N}_{Q}, \mathbf{N}_{Q}\right]$ is of finite index in Υ_{Q} so $\Upsilon_{Q} /\left[\mathbf{N}_{Q}, \mathbf{N}_{Q}\right]$ is finite, of exponent k_{Q} say. Then
$\left(\Upsilon_{Q}\right)^{k_{Q}} \leq\left[\mathbf{N}_{Q}, \mathbf{N}_{Q}\right] \leq[\Gamma, \Gamma]$ and any element of $\Upsilon_{Q} \Phi[\Gamma, \Gamma] / \Phi[\Gamma, \Gamma]$ is of order dividing k_{Q}.

To prove $\operatorname{Span}_{\mathbb{R}}\left[\mathbf{N}_{Q}, \mathbf{N}_{Q}\right]=U_{Q}$, note that the group N_{Q} is 2-step nilpotent, so $\left[\mathbf{N}_{Q}, \mathbf{N}_{Q}\right] \subset U_{Q}$ and hence $\operatorname{Span}_{\mathbb{R}}\left[\mathbf{N}_{Q}, \mathbf{N}_{Q}\right] \subseteq U_{Q}$. For the other inclusion, let $\beta_{1}, \ldots, \beta_{m+2 n} \in \mathfrak{n}_{Q}$ be such that $b_{j}=\exp \left(\beta_{j}\right) \in N_{Q}$ generate the lattice \mathbf{N}_{Q}. Then $\mathfrak{n}_{Q}=\operatorname{Span}_{\mathbb{R}}\left(\beta_{1}, \ldots, \beta_{m+2 n}\right)$ and

$$
\mathfrak{u}_{Q}=\left[\mathfrak{n}_{Q}, \mathfrak{n}_{Q}\right]=\operatorname{Span}_{\mathbb{R}}\left(\left\{\left[\beta_{i}, \beta_{j}\right]\right\}\right) .
$$

Here $\left[\beta_{i}, \beta_{j}\right]$ is the Lie bracket, but U_{Q} is isomorphic to \mathfrak{u}_{Q} via exp, so that $\exp \left[\beta_{i}, \beta_{j}\right]=\left[\exp \left(\beta_{i}\right), \exp \left(\beta_{j}\right)\right]=\left[b_{i}, b_{j}\right]$. Thus $U_{Q}=\operatorname{Span}_{\mathbb{R}}\left(\left\{\left[b_{i}, b_{j}\right]\right\}\right) \subseteq$ $\operatorname{Span}_{\mathbb{R}}\left[\mathbf{N}_{Q}, \mathbf{N}_{Q}\right]$, as required.

For neat Γ, it is shown in $[\mathrm{Sa}]$ that $(\Gamma / \Upsilon)_{o}^{\mathrm{Fix}}$ is trivial. Combining this with $(\Gamma / \Upsilon)_{o}^{\mathrm{Fix}}=\Lambda \Upsilon / \Upsilon$ from Lemma 4.4, one concludes that $\Lambda \subseteq \Upsilon$. Therefore $F=F_{o}$ and $\mathrm{rk}_{\mathbb{Z}}(F)=0$.

References

[] Ar Armstrong M. A., The fundamental group of the orbit space of a discontinuous group, Proc. Cam. Phil. Soc. 64 (1968) 299-301.
[]AMRT Ash A., Mumford D., Rapoport M., Tai Y-S., Smooth Compactifications of Locally Symmetric Varieties, Cambridge University Press, Cambridge, 2010.
[]BB Baily W.L. Jr., Borel A., Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math. (2) 84 (1966), 442528.
[]BJ Borel A., Ji L., Compactifications of Symmetric and Locally Symmetric Spaces, Birkhäuser, Boston, 2006.
[]Fu Fulton W., Introduction to Toric Varieites, Princeton University Press, Princeton, 1993.
[]GHS Gritsenko V., Hulek K., Sankaran G.K., Abelianisation of orthogonal groups and the fundamental group of modular varieties, J. Algebra, 322 (2009), 463-478.
[]HK Heidrich H., Knöller F.W., Über die Fundamentalgruppen von Siegelscher Modulvarietäten vom Grade 2, Manuscripta Math. 57 (1978), 249-262.
[]He Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics 34. American Mathematical Society, Providence, RI, 2001.
[]HSa Hulek K., Sankaran G.K., The fundamental group of some Siegel modular threefolds, In: Barth W., Hulek K., Lange H. (eds.) Abelian Varieties, De Gruyter, Berlin, 1995.
[]Kn Knöller F.W., Die Fundamentalgruppen der Siegelscher Modulvarietäten, Abh. Math. Sem. Univ. Hamburg 57 (1987) 203-213.
[]Ko Kollár J., Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), 117-215.
[]Ma Margulis G., Arithmeticity of the irreducible lattices in semisimple groups of rank greater than 1, Invent. Math. 76 (1984) 93-120.
[]Mok Mok N., Projective algebraicity of minimal compactifications of complex-hyperbolic space forms of finite volume, Perspectives in Analysis, Geometry, and Topology Progr. Math., 296, Birkhäuser, New York, 2012, 331-354.
[]P-S Pyatetskii-Shapiro I.I., Automorphic Functions and the Geometry of Classical Domains, Gordon and Breach, New York, 1969.
[]Sa Sankaran G.K., Fundamental group of locally symmetric varieties, Manuscripta Math. 90 (1996) 39-48.

[^0]: ${ }^{*}$ Research partially supported by Contract 015/9.04.2014 with the the Scientific Foundation of Kliment Ohridski University of Sofia.

