6,404 research outputs found

    Quantifying Finite Temperature Effects in Atom Chip Interferometry of Bose-Einstein Condensates

    Full text link
    We quantify the effect of phase fluctuations on atom chip interferometry of Bose-Einstein condensates. At very low temperatures, we observe small phase fluctuations, created by mean-field depletion, and a resonant production of vortices when the two clouds are initially in anti-phase. At higher temperatures, we show that the thermal occupation of Bogoliubov modes makes vortex production vary smoothly with the initial relative phase difference between the two atom clouds. We also propose a technique to observe vortex formation directly by creating a weak link between the two clouds. The position and direction of circulation of the vortices is subsequently revealed by kinks in the interference fringes produced when the two clouds expand into one another. This procedure may be exploited for precise force measurement or motion detection.Comment: 7 pages, 5 figure

    More on coupling coefficients for the most degenerate representations of SO(n)

    Full text link
    We present explicit closed-form expressions for the general group-theoretical factor appearing in the alpha-topology of a high-temperature expansion of SO(n)-symmetric lattice models. This object, which is closely related to 6j-symbols for the most degenerate representation of SO(n), is discussed in detail.Comment: 9 pages including 1 table, uses IOP macros Update of Introduction and Discussion, References adde

    Quantum reflection of ultracold atoms from thin films, graphene, and semiconductor heterostructures

    Full text link
    We show that thin dielectric films can be used to enhance the performance of passive atomic mirrors by enabling quantum reflection probabilities of over 90% for atoms incident at velocities ~1 mm/s, achieved in recent experiments. This enhancement is brought about by weakening the Casimir-Polder attraction between the atom and the surface, which induces the quantum reflection. We show that suspended graphene membranes also produce higher quantum reflection probabilities than bulk matter. Temporal changes in the electrical resistance of such membranes, produced as atoms stick to the surface, can be used to monitor the reflection process, non-invasively and in real time. The resistance change allows the reflection probability to be determined purely from electrical measurements without needing to image the reflected atom cloud optically. Finally, we show how perfect atom mirrors may be manufactured from semiconductor heterostructures, which employ an embedded two-dimensional electron gas to tailor the atom-surface interaction and so enhance the reflection by classical means.Comment: 8 pages, 4 figure

    Factors modulating the secretion of thyrotropin and other hormones of the thyroid axis.

    Get PDF
    The first portion of this paper is devoted to an overview of the normal function of the hypothalamo-pituitary-thyroid axis. This section emphasizes areas of current research interest and it identifies several sites and mechanisms that are potentially important interfaces with toxins or toxic mechanisms. We then describe an in vitro technique for the continuous superfusion of enzymatically dispersed pituitary cells; this approach is particularly valuable in studying the dynamics of the TSH responses to the factors known (or suspected) to regulate TSH secretion in vivo. Using this technique, we have found that 10(-5)M prostaglandin (PG)I2 stimulates TSH secretion without altering the response to TRH (10(-8)M), and that this stimulation is not due to its rapid conversion to 6-keto PGF1 alpha. In contrast PGs of the E series (PGE1 and PGE2, 10(-5)M) increase responsiveness to TRH but have no effect alone. We found no effects of any of the other prostanoids tested (PGs A2, B2, F1 alpha, F2 alpha, thromboxanes A2 and B2, and the endoperoxide analog, U-44069. Somatostain (10(-9)M inhibits TRH-induced TSH secretion, but does not alter the responsiveness to PGI2. These findings suggest that somatostatin blocks TSH secretion at a point that is functionally prior to the involvement of the PGs, and perhaps does so by blocking synthesis or limiting availability of selected PGs

    Least squares support vector machines for direction of arrival estimation

    Get PDF
    Machine learning research has largely been devoted to binary and multiclass problems relating to data mining, text categorization, and pattern/facial recognition. Recently, popular machine learning algorithms, including support vector machines (SVM), have successfully been applied to wireless communication problems. The paper presents a multiclass least squares SVM (LS-SVM) architecture for direction of arrival (DOA) estimation as applied to a CDMA cellular system. Simulation results show a high degree of accuracy, as related to the DOA classes, and prove that the LS-SVM DDAG (decision directed acyclic graph) system has a wide range of performance capabilities. The multilabel capability for multiple DOAs is discussed. Multilabel classification is possible with the LS-SVM DDAG algorithm presented

    Least squares support vector machines for direction of arrival estimation with error control and validation

    Get PDF
    The paper presents a multiclass, multilabel implementation of least squares support vector machines (LS-SVM) for direction of arrival (DOA) estimation in a CDMA system. For any estimation or classification system, the algorithm\u27s capabilities and performance must be evaluated. Specifically, for classification algorithms, a high confidence level must exist along with a technique to tag misclassifications automatically. The presented learning algorithm includes error control and validation steps for generating statistics on the multiclass evaluation path and the signal subspace dimension. The error statistics provide a confidence level for the classification accuracy

    Machine learning based CDMA power control

    Get PDF
    This paper presents binary and multiclass machine learning techniques for CDMA power control. The power control commands are based on estimates of the signal and noise subspace eigenvalues and the signal subspace dimension. Results of two different sets of machine learning algorithms are presented. Binary machine learning algorithms generate fixed-step power control (FSPC) commands based on estimated eigenvalues and SIRs. A fixed-set of power control commands are generated with multiclass machine learning algorithms. The results show the limitations of a fixed-set power control system, but also show that a fixed-set system achieves comparable performance to high complexity closed-loop power control systems

    Least squares support vector machines for fixed-step and fixed-set CDMA power control

    Get PDF
    This paper presents two machine learning based algorithms for CDMA power control. The least squares support vector machine (LS-SVM) algorithms classify eigenvalues estimates into sets of power control commands. A binary LS-SVM algorithm generates fixed step power control (FSPC) commands, while the one vs. one multiclass LS-SVM algorithm generates estimates for fixed set power control

    On the secondly quantized theory of many-electron atom

    Full text link
    Traditional theory of many-electron atoms and ions is based on the coefficients of fractional parentage and matrix elements of tensorial operators, composed of unit tensors. Then the calculation of spin-angular coefficients of radial integrals appearing in the expressions of matrix elements of arbitrary physical operators of atomic quantities has two main disadvantages: (i) The numerical codes for the calculation of spin-angular coefficients are usually very time-consuming; (ii) f-shells are often omitted from programs for matrix element calculation since the tables for their coefficients of fractional parentage are very extensive. The authors suppose that a series of difficulties persisting in the traditional approach to the calculation of spin-angular parts of matrix elements could be avoided by using this secondly quantized methodology, based on angular momentum theory, on the concept of the irreducible tensorial sets, on a generalized graphical method, on quasispin and on the reduced coefficients of fractional parentage
    corecore