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Abstract—This paper presents a multiclass, multilabel imple-
mentation of Least Squares Support Vector Machines (LS-SVM)
for direction of arrival (DOA) estimation in a CDMA system.
For any estimation or classification system the algorithm’s
capabilities and performance must be evaluated. Specifically,
for classification algorithms a high confidence level must exist
along with a technique to automatically tag misclassifications. The
learning algorithm presented in this paper includes error control
and validation steps for generating statistics on the multiclass
evaluation path and the signal subspace dimension. The error
statistics provide a confidence level of the classification accuracy.

I. INTRODUCTION
Machine learning research has largely been devoted to

binary and multiclass problems relating to data mining, text
categorization, and pattern/facial recognition. Recently, pop-
ular machine learning algorithms, including support vector
machines (SVM), have successfully been applied to wireless
communication problems, notably spread spectrum receiver
design [1], and channel equalization [2].
Beamforming, tracking, and DOA estimation are current

research topics with various technical approaches; three tech-
niques based on signal subspace decomposition are ESPRIT,
MUSIC, and Root-MUSIC [3]. In [4] neural networks have
been successfully applied to the problem of DOA estimation
and adaptive beamforming. New machine learning techniques,
such as SVMs and boosting [5], perform exceptionally well
in multiclass problems and new optimization techniques are
published regularly. These new techniques have the potential
to exceed the performance of the neural network algorithms
relating to communication applications.
In this paper we present a multiclass SVM algorithm trained

with projection vectors generated from the signal subspace
eigenvectors and the respective covariance matrices. The out-
put labels from the SVM system are the DOA estimates. The
broad range of our research in LS-SVM based DOA estimation
includes multilabel and multiclass classification, classification
1Sandia is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department of Energy under
Contract DE-AC04-94AL85000.

accuracy, error control and validation, kernel selection, and
estimation of signal subspace dimension.

II. LEAST SQUARES SUPPORT VECTOR MACHINES
SVMs were originally designed for binary classification

problems. A variety of approaches are currently being devel-
oped to tackle the problem of applying SVMs to multiclass
problems. Much like all machine learning algorithms SVMs
find a classification function that separates data classes, with
the largest margin, using a hyperplane. The data points near
the optimal hyperplane are the “support vectors”. SVMs are a
nonparametric machine learning algorithm with the capability
of controlling the capacity through the support vectors.
In a binary classification system the input sequence and a

set of training labels are represented as {xk,yk}Kk=1 , where
yk = {−1, 1} represents the classification “label” applied to
the input vector xk. If the two classes are linearly separable
in the input space then the hyperplane separating the classes
is defined as wTx+b = 0, w is a weight vector perpendicular
to the separating hyperplane, b is a bias that shifts the
hyperplane parallel to itself. If the input space is projected
into a higher dimensional feature space then the hyperplane
becomes wTΓ (x)+b = 0. The nonlinear function Γ (·) maps
the input space to the feature space.
Suykens, et.al., [6] introduced a least squares SVM (LS-

SVM) which is based on the SVM classifier,

y (x) = sign

"
KX
k=1

αkykΓ (x,xk) + b

#
. (1)

The LS-SVM classifier is generated from the optimization
problem:

min
w,b,φ

LLS (w,φ) = 1

2
kwk2 + 1

2
γ

KX
k=1

φ2k, (2)

γ and φk are the regularization and error variables, respec-
tively. The minimization in (2)includes the constraints

yk
£
wTϕ (xk)+b

¤ ≥ 1− φk, k = 1, . . . ,K, (3)

GLOBECOM 2003 - 2172 - 0-7803-7974-8/03/$17.00 © 2003 IEEE



Misclassifications, due to overlapping distributions, are ac-
counted for with the error variables φk, γ is a regularization
parameter that governs the complexity of the SVM, and
the margin between the hyperplane and the data points in
the feature space is maximize when w is minimized. The
Lagrangian of equation (2) is defined as

ZLS (w,b,φ, α) = LLS (w,b,φ) (4)

−
KX
k=1

αk
©
yk
£
wTΓ (xk)+b

¤ −1 + φk}

where αk are Lagrangian multipliers, also known as “sup-
port values” that can either be positive or negative, and the
corresponding data points, xk, are the “support vectors”. The
support values are proportional to the errors at the data points.
In the standard SVM case many of these support values are
zero, but most of the least squares support values are non-zero.
In [6] a conjugate gradient method is proposed for finding b
and α, which are required for the SVM classifier in equation
(1) .

A. Multiclass Classification
One-vs-one multiclass classification is based on binary LS-

SVMs. For P distinct classes there are P(P−1)
2 hyperplanes

that separate the classes with maximum margin. The hyper-
planes with maximum margin are constructed in the LS-SVM
training phase. The Decision Directed Acyclic Graph (DDAG)
is a specific technique for one-vs-one multiclass classification
[8]. The technique uses a tree structure to compare the test data
to each of the hyperplanes. Through a series of elimination
steps the best label is assigned to the input data. The LS-
SVM algorithm for DOA estimation is based on the DDAG
architecture with each node containing a binary LS-SVM
classifier of the ith and jth classes, refer to Figure 1.

Not 4Not 1

1 vs 4

1 vs 32 vs 4

Not 3 Not 4,
Not 1Not 2

3 vs 4 2 vs 3 1 vs 2

4 123

Input

Fig. 1. Four Class DDAG

III. SVMS AND DOA ESTIMATION
The process of DOA estimation is to monitor the out-

puts of D antenna elements and predict the angle of ar-
rival of L signals, L < D. The output vector for each
incident signal from the antenna elements is a (θl) =£
1 e−jkl . . . e−j(D−1)kl

¤T
, and the vector of incident

DOAs is θ =
£
θ1, . . . , θL

¤
. With a training process,

the learning algorithms generate DOA estimates based on the
responses from the antenna elements, a (θl).
For the LS-SVM based approach to DOA estimation the

output of the receiver is used to calculate the sample co-
variance matrix bRrr of the input data signal xr (k) , bRrr =
1
M

PK
k=K−M+1 xr (k)x

T
r (k). The dimension of the obser-

vation matrix is D × M , M is ideal sample size (window
length), and the dimension of the sample covariance matrix is
D×D. The principal eigenvectors, v1, . . . ,vD, are calculated
via eigen decomposition (ED) or subspace tracking techniques.
Each eigenvector is used to calculate a covariance matrix,bRvv1 , . . . , bRvvD .

The LS-SVM DOA estimation algorithm includes pre-
processing, training, and testing steps.

• Preprocessing for SVM Training
1) Generate the D ×N training vectors for the P SVM
classes, D is the number of antenna elements, N is the
number of input data samples. 2) Generate the P sample
covariance matrices, C,with M samples from the D×N
data vector. 3) Calculate the signal eigenvector, S, from
each of the P sample covariance matrices. 4) Calculate
the D × 1 projection vectors, C · S, for each of the P
classes. 5) Store the projection vectors for the training
phase and the eigenvectors for the testing phase.

• LS-SVM Training
1) With the P projection vectors train the P(P−1)

2 nodes
with the one-vs-one LS-SVM algorithm. 2) Store the LS-
SVM variables, αk and b, refer to equation (1) .

• Preprocessing for SVM Testing
1) Acquire D × N input signal from antenna array. 2)
Generate the sample covariance matrix with M samples
from the D ×N data vector. 3) Calculate the eigenvec-
tors for the signal subspace and the noise subspace. 4)
Generate the covariance matrices for each eigenvector

• LS-SVM Testing for the ith/jth DDAG Node.
1) Calculate two D × 1 projection vectors with the
desired eigenvector covariance matrix and the ith and
jth eigenvectors from the training phase. 2) Test both
projection vectors against the LS-SVM hyperplane for
the ith/jth node. 3) Calculate the mean value of the two
LS-SVM output vectors (labels). Select the mean value
that is closest to a decision boundary, 0 or 1. Compare
this value to the label definition at the DDAG node, then
select the proper output label. 4) Repeat process for the
next DDAG node in the evaluation path or declare the
final DOA label.

• Error Control
1) Review the MSE calculations for the DDAG evaluation
path. 2) Apply error control and validation measures to
classify the label as either an accurate DOA estimate or
as NOISE.

The algorithm presented in this section requires only the
set of estimated eigenvectors, which are used to generate
projection coefficients for the classification process. Table I
includes three sets of projection vectors, each set corresponds
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TABLE I
PROJECTION COEFFICIENTS FOR MACHINE LEARNING BASED POWER

CONTROL

Projection Coefficients
25◦ 30◦ 40◦

1 0.17+i·0.86 -0.20-i·0.54 0.00+i·0.86
2 0.66+i·0.05 -0.82+i·0.14 0.73-i·0.55
3 0.04-i·0.73 0.28+i·0.96 -1.01-i·0.58
4 -1.08-i·0.50 1.04-i·0.37 0.06+i·1.05
5 -0.60+i·0.92 -0.56-i·1.01 0.72-i·0.61
6 0.60+i·0.74 -0.87+i·0.64 -0.92-i·0.51
7 0.72-i·0.56 0.63+i·0.62 -0.03+i·0.76
8 -0.52-i·0.78 0.51-i·0.44 0.45-i·0.42

to a different DOA. From a review of the data it is evident
that the classes are not linearly separable. The data must
be projected to a higher dimension feature space and tested
against the separating hyperplane.

A. Multilabel Capability for Multiple DOAs
In DOA estimation for cellular systems, there can be mul-

tiple DOAs for a given signal. This results from multipath
effects induced by the communication channel. The machine
learning system must be able to discriminate between a small
number of independent DOAs that include signal components
with similar time delays. The machine learning algorithm then
must generate multiclass labels, yi ∈ Y , where Y ∈ [−90, 90]
is a set of real numbers that represent an appropriate range
of expected DOA values, and multiple labels yi, i = 1 . . . L
for L dominant signal paths. If antenna sectoring is used in
the cellular system the multiclass labels are from the set Y ∈
[Si], where Si is field of view for the ith sector. The LS-SVM
algorithm for DOA estimation assigns DOA labels to each
eigenvector in the signal subspace. By repeating the DDAG
cycle for each eigenvector the multiclass algorithm has the
capability of assigning multiple labels to the input signal.

B. Simulation Results
Simulations of the LS-SVM DDAG DOA estimation al-

gorithm are based on a complex system model that includes
amplitude and phase distributions representative of the com-
munication channel. The received signal at the receiver is
modeled as

xr (t)=

D,LX
d,l=1

a (θl)αdlsd (t− τdl) cos (wc (t− τdl))+nd (t) .

(5)
This model includes D antenna array elements with
steering array vector a (θl) and additive Gaussian noise
nd (t). The model assumes L independent, resolvable sig-
nal paths. The multipath variable αdl is defined as αdl =
ρdle

j(2πfc(t−τdl)+φc). The amplitude of the received signal
ρdl, includes the transmitted power

p
pt (t) and the attenuation

due to the link gain and shadowing ql. This variable is modeled
as a fixed, Rayleigh, Ricean, or log-normal distributed random
variable. The Doppler shift for each resolvable path is defined
by fc = vcwc

2πc ; vc is the velocity of the mobile in
m
sec , wc is

the carrier frequency, and c is the speed of propagation. A
uniformly distributed carrier phase shift, φc, and a time delay
for each signal path, τdl, are also included in the multipath
variable, αdl. The CDMA spreading code, sd (t− τdl) , pro-
vides the processing gain at the correlator output.
The training and test signals are the complex outputs from

the antenna array with eight elements. The basic multiclass
LS-SVM system, presented in this paper, includes four DOA
classes and six DDAG nodes. Figures 2 and 3 shows results for
two four class DDAG architectures. The LS-SVM system in
Figure 2 includes one degree per DOA class, Figure 3 shows
ten degrees per DOA class. To completely test the LS-SVM
DDAG’s capabilities the simulations were automated to test a
wide range of DOAs. The LS-SVM DDAG DOA estimation
algorithm is extremely accurate. No misclassifications were
logged. Additional simulations show that the LS-SVM DDAG
system accurately classifies the DOAs for three to ten classes
and DOA ranges from one degree to twenty degrees.

10 15 20 25 30
DOAs

ML DOA Estimates

DOA Test Signals

Fig. 2. LS-SVM for DOA estimation, four classes with one degree separation
between each.

10 15 20 25 30 35 40 45 50 55 60
DOAs

ML DOA Estimates

DOA Test Signals

Fig. 3. LS-SVM for DOA estimation, four classes with ten degree separation
between each.

IV. CLASSIFICATION ACCURACY AND ERROR CONTROL
For any estimation or classification algorithm the errors

must be defined to evaluate the algorithm’s performance and
system capabilities. Specifically for classification algorithms,
a high confidence level must exist along with a technique to
automatically recognize misclassifications. Characterizing the
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performance of DDAG multiclass classification algorithms is a
difficult task due to numerous possibilities with the evaluation
path. In this section we present methods for performance
characterization and error control.

A. Decision Grids

The decision grid (DG) technique was developed to track the
DDAG evaluation path and generate statistics to characterize
the confidence level of the DOA classifications. The empirical
DG (E-DG) is a technique developed to quantify errors and add
insight into the robustness of the LS-SVM DDAG architecture.
E-DG’s are automatically generated in the LS-SVM DDAG
DOA estimation algorithm. The E-DGs tabulate the mean of
the LS-SVM output label vectors at each DDAG node and
level. The mean values are referred to as “decision statistics”.
The unique design of this multiclass LS-SVM algorithm for

DOA estimation includes testing the input data against two
hyperplanes at the ith/jth node. With this approach the two
output vectors at each node are compared to one another. In
a noise-free environment, with perfect classification, the two
label vectors would be binary opposites, i.e. one output label
would be a vector of 00s and the other output vector would
be all 10s. This technique enables computation of empirical
mean square errors (MSEs), refer to Section IV-B.
Table II includes one standard DG and two E-DGs for a

three class DDAG with a two degree DOA range per class. The
two levels of a three class DDAG are equivalent to the first
two levels of a four class DDAG, refer to Figure 1. The first
DG shows the decision statistics for a noise free classification
process, as presented by the deterministic evaluation paths.
The first E-DG presents the decision statistics for a signal
subspace eigenvector; the second E-DG presents the decision
statistics for a noise subspace eigenvector. The output labels
are the mean values of the vectors generated by the LS-SVM
algorithm.

B. Empirical MSEs

The difficulty in tracking the performance of the LS-SVM
DDAG DOA estimation algorithm is due to the numerous
DDAG evaluation paths. For many DDAGs the evaluation
paths can be determined based on the input data and the
class definitions. How can decision statistics be applied to
performance characterization?
The primary performance measure for the LS-SVM DDAG

is the empirical MSE (E-MSE). The E-MSE is a measure of
the empirical classification accuracy achieved at each DDAG
node and is a technique that allows for real-time error tracking
with only the decision statistics. The E-MSEs are calculated
with the differences between the two LS-SVM decision sta-
tistics at each node in the evaluation path. For example, the
E-MSE for a 3 class DDAG is calculated with only the E-
DG presented in Table II. The MSE for Class 2, Level 1 is
(|0.032− 0.576|− 1)2 = 0.208 and the MSE for Class 2,
Level 2 is (|1− 0|− 1)2 = 0.

TABLE II
THEORETIC DECISION GRID AND TEST CASES FOR SIGNAL AND NOISE
EIGENVECTORS. THE DDAG SYSTEM INCLUDES 3 CLASSES WITH A 2

DEGREE DOA RANGE.

Level 1 Level 2
DOA Label 0 Label 1 Label 0 Label 1

Decision Grid
Class 1 1 0 1 0 1

2 0 1 0.5 0.5
Class 2 3 0.5 0.5 0\1 1\0

4 1 0 0.5 0.5
Class 3 5 1 0 1 0

Signal Data
Class 1 1 0 1 0 1

2 0 1 0.176 0.816
Class 2 3 0.032 0.576 1 0

4 0.952 0 0.808 0.496
Class 3 5 1 0 1 0

Noise Data
Class 1 1 0.328 0.752 0.232 0.896

2 0.376 0.744 0.256 0.904
Class 2 3 0.304 0.712 0.144 0.952

4 0.352 0.768 0.136 0.944
Class 3 5 0.384 0.776 0.184 0.944

C. Error Control and Validation

The design of the LS-SVM DDAG DOA estimation algo-
rithm requires one step for a high confidence level in the
classification process. For real-time applications the E-MSE
provides two very important results:
1) A measure of confidence for the classification process.
2) A method for determining the dimension of the signal
subspace.

Table III presents MSE data for a four class DDAG with
5◦, 10◦ and 20◦ DOA ranges. The MSE data is listed for
each level in the DDAG’s evaluation path, the average E-
MSE is also listed. The data shows that MSEs for a 4 class
DDAG fluctuate little as a result of the DOA range. Likewise,
additional simulations show that MSEs are relatively constant
for different classes of DDAGs. LS-SVM DOA estimation
data, not presented here, supports these trends for DDAGs
architectures with three to ten classes and 1◦ to 20◦ DOA
ranges per class.
The MSE data shows that there is a distinct and wide

separation between signal and noise MSEs. The MSEs for
signal subspace eigenvectors are less than 20%, on average,
of the MSEs for noise subspace eigenvectors. Based on the
findings presented in this section the E-MSEs serve as reliable
measure of confidence for the LS-SVM generated DOA labels.
In addition, since the E-MSE is calculated with the LS-SVM
DDAG output label vectors (with no prior information) real-
time results provide required information on the confidence of
the DOA estimation. With this E-MSE technique a LS-SVM
DOA machine learning system automatically “decides” if a
LS-SVM generated DOA label is accurate and assigned to a
received signal, or inaccurate and a result of received noise.
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TABLE III
MSE PER DDAG LEVEL AND CLASS, FOUR CLASS DDAG WITH FIVE,

TEN, AND TWENTY DEGREE DOA RANGES.

Level
1 2 3 Average

5◦ Range
E-MSE, Signal 0.075 0.067 0.145 0.096
E-MSE, Noise 0.843 0.636 0.460 0.646
10◦ Range

E-MSE, Signal 0.030 0.060 0.066 0.052
E-MSE, Noise 0.718 0.743 0.654 0.705
20◦ Range

E-MSE, Signal 0.008 0.261 0.086 0.118
E-MSE, Noise 0.545 0.552 0.646 0.581

D. Estimation of the Signal Subspace Dimension
This paper presents a new application for multiclass classi-

fication. The research field of DOA estimation presents system
level problems that can be solved with classification algo-
rithms that include accurate error control and validation. For
example, CDMA DOA estimation algorithms requires accurate
knowledge of the signal subspace dimension, which provides a
measure of received multipaths and is used in SIR estimation.
Estimating the signal subspace dimension is not an easy task
since the separation between the signal subspace and noise
subspace eigenvalues may not be well defined. In addition,
the errors associated with the sample covariance matrix add
to the uncertainty. The information theoretic criteria [9] is an
algorithm for determining the signal subspace dimension. This
technique requires knowledge of all eigenvalues in the sample
subspace and minimizing an MDL cost function. The LS-SVM
DDAG algorithm presented in this paper is designed with an
error control step. Since the algorithm classifies eigenvectors
the signal subspace dimension is automatically calculated by
monitoring the E-MSE and comparing it to values from other
eigenvectors in the same data set.
Figure 4 displays the E-MSE for sixteen signals with DOAs

spanning a four class DDAG. The DOA classes are defined at
30◦, 35◦, 40◦, and 45◦. The training and test vectors each
consist of eighty data samples. MSE data is included for one
signal in the signal subspace and one signal from the noise
subspace. Each MSE data point was generated from 2000
independent data vectors containing signals incident upon an
eight element antenna array. The received signals uniformly
spans the DOA range of 30◦ to 45◦. There is a distinct
separation between MSEs for signal eigenvectors and noise
eigenvectors. The data presented in this paper proves that the
MSE statistic is an accurate method for estimating the signal
subspace dimension for all DOAs spanning the DDAG classes.
Additional simulations show that the separation between the
signal and noise subspaces is significant, and constant, for
training vectors with 100 or more samples.

V. CONCLUSION

In this paper we presented a multiclass LS-SVM archi-
tecture for DOA estimation as applied to a CDMA cellular

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
0

0.25

0.5

0.75

DOA

E-
M
SE

Noise
Signal

Fig. 4. MSE for DOAs spanning the four classes in the LS-SVM DDAG.

system. The LS-SVM algorithm for DOA estimation assigns
DOA labels to each eigenvector in the signal subspace. By
repeating the DDAG cycle for each eigenvector the multiclass
algorithm has the capability of assigning multiple labels to
the input signal. Simulation results show a high degree of
accuracy, as related to the DOA classes and prove that the LS-
SVM DDAG system has a wide range of performance capabil-
ities. The LS-SVM DOA estimation algorithm is superior to
standard techniques due to the robust design that is insensitive
to received SIR, Doppler shift, size of the antenna array, and
the computational requirements are adaptable to the desired
applications. The results show that the algorithm is accurate
for a large range of DDAG performance independent of DDAG
class or DOA range per class.
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