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Least Squares Support Vector Machines for Direction of Arrival
Estimation

Judd A. Rohwer!, Chaouki T. Abdallah?, and *Christos G. Christodoulou?
!Sandia National Laboratories, Albuquerque, NM, jarohwe @sandia.gov
2Department of Electricat and Computer Engineering, University of New Mexico,
Albuquerque, NM., {chaouki,christos } @eece.unm.edu

1 Introduction

Machine learning research has largely been devoted to binary and multiclass problems relating to
data mining, text categorization, and pattem/facial recognition, Recently, popular machine learning
algorithms, including support vector machines (SVM), have successfully been applied to wireless
communication problems, notably spread spectrum receiver design [1], channel equalization [2).
This paper presents a multiclass implementation of SVMs for direction of arrival (DOA) estimation.

2 Least Squares Support Vector Machines

Ina binajpl classification system the input sequence and a set of training labels are represented as
{2k, ue prz, » where g, = {—1, 1} represents the classification “label” of the input vector x;. If the
two classes are lingarly separable in the input space then the hyperplane separating the classes is
defined as wx+b = 0, w is a vector of weights and b is a bias term. If the input space is projected
to a higher dimensional feature space then the hyperplane becomes wT' (x) 46 = 0, the nonlinear
function I' (-} maps the input space to the feature space.

Suykens, et.al., [3] introduced a least squares SVM (LS-§VM) which is based on the Vapnik S¥M

classifier,
K
y(x) = sign [Z appil (2,%,)+ b} . 1))
k=1
The LS-SVM classifier is generated from the optimization problem:
1 1 &
. _ 1 2, 1 2 . .
F;ﬂ Lrs(whe) = 2 flwl* + 2¢§¢"' with constraints [¥)]
y [wipla) +b] 2 1=, k=1,.. K, 3}

Misclassifications, due o overlapping distributions, are accounted for with the stack variables ¢, ,
1 is a regularization parameter that governs the complexity of the SVM, and the margin between
the hyperplane and the data points in the feature space is maximize when w is minimized and
the relationship (xk)l w{xi} = I (x,x,) is due to Mercer's Theorem [4]. The Lagrangian of
equation (2) is defined as

K
Zis(whd o) = Lis{whe) =3 ow {w [WT(z) +8] - L+ ¢} @
k=1
where oy are Lagrangian multipliers, also known as “support veciors™, that can either be positive or
negative.

One-vs-one multiclass classification is based on birary LS-SVMs. For P distinct classes there are
ﬂ!;_—'l hyperplanes that separate the classes with maximum margin. The hyperplanes with maxi-
mum margin are constructed in the LS-SVM training phase. The Decision Directed Acyclic Graph
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R [
(DDAG) is a specific technique for one-vs-one multiclass classification [S]. The technique uses a
tree structure 10 compare the test data to each of the hyperplanes. Through a series of elimination
steps the best label is assigned to the input data. The L3-SVM algorithm for DGA estimation is
based on the DDAG architecture with each node containing a binary LS-SVM classifier of the it
and §** classes, see Figure 1.

Figure 1: DAGSVM for Four Classes

3 SVMs and DOA Estimation

The process of DOA estimation is to monitor the cutputs of B antenna elements and predict the
angle of arrival of L signals, L. < I, The output vector for each incident signal from the antenna
elements isB{#) = [ 1 e~ .. g iB-Dk ]T, and the vector of incident DOAs is @ =
[ 81, ..o 0L ] With a training process the learmning algaorithms generate DOA estimates based
on the responses from the antenna elements, & ().

For the LS-SVM based approach to DOA estimation the output of the receiver is used to calculate the
sample covariance matrix R, of the input data signal x, (£}, R = 5 00 1wy %, (k) xT (R).
The dimension of the cbservation matrix is I x M. M is idea! sample size (window length), and the
dimension of the sample covariance matrix is B x B. The principal eigenvectors, v,,. .., vp, are
calculated via eigen decompoesition (ED} or subspace tracking techniques. Each eigenvector is used
to calculate a covariance matrix, Rug,y - - -y Ry,

The LS-8VM DOA estimation algorithm includes preprocessing, training, and testing steps.

8 Preprocessing for SVM Training
1) Generate the b x /¥ training vectors for the P SVM classes, I is the number of antenna
elements, /¥ is the number of input data samples. 2) Generate the £ sample covanance
matrices, C,with 3 samples from the I x N data vector 3) Calculate the signal eigenvector,
8§, from each of the P sample covariance matrices. 4} Calculate the Ib x { projection vectors,
C - 8, for each of the P classes. 5) Store the projection vectors for the training phase and the
eigenvectors for the testing phase.

& LS-8VM Training

1) With the P projection vectors train the ﬂf;;'l nedes with the one-vs-ong L8-5VM algo-
rithm. 2) Store the L.5-SVM variables, oy, and b from equation (1) .

Preprocessing for SYM Testing

1) Acquire I x /¥ input signal from antenna array. 2) Generate the sample covariance matrix
with M samples from the I x N data vector. 3) Calculate the eigenvectors for the signal
subspace and the noise subspace. 4) Generate the covariance matrices for each eigenvector
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» LS-SVM Testing for the i** /§'" DDAG Node.

13 Calculate two I x I projection vectors with the desired eigenvector covariance matrix and
the " and 7 eigenvectors from the training phase. 2) Test bath projection vectors against
the LS-SVM hyperplane for the #t" /5" node. 3) Calculate the mean value of the 1wo LS-
SVM outpui vectors (labels). Select the mean vatue that is closest to a decision boundary, 0 or
1. Compare this value to the label definition at the DDAG node, then select the proper output
label. 4) Repeat process for the next DDAG node in the evaluation path or declare the final
DOA label.

LS-5VM DDAG Error Conteol

1) Review the MSE calculations for the DDAG evaluation path. 2) Apply error control and
validation measures to ciassify the label as either an accurate DOA estimate or as NOISE.

3.1 Simulation Results

Simulations of the L§-SVM DDAG DOQA estimation algorithm are based on o complex system
model that includes amplitude and phase distributions representative of the communication channel,
The received signal at the receiver is modeled as

ME
-

x-{1) = B () cvarsag (¢ — Tardcos (we (8 — Ta)) + na (1) (&3]

=
Il

11=1

i

This model includes D antenna arrzliy elements with steering array vector @ () and additive Gaussian
noise 714 (£). In addition, the model assumes L independent, resolvable signal paths. The multipath
variable o is defined as ag = pyed@ f-li=7m}+4.) The amplitude of the received signal ;.
includes the transmitted power /p; (t} and the attenuation due to the link gain and shadowing g'.
This variable is modeled as a fixed, Rayleigh, Ricean. or log-normal distributed random variable.
The Doppler shift for each resolvable path is defined by f. = 522y, is the velocity of the mobile
in 2, w, ts the carier frequency, and ¢ is the speed of propagation. A uniformly distributed carrier
phase shift, ¢, and a time delay for each signal path, 74, are also included in the multipath variable,
ayr. The CDMA spreading code, 54 (t — 74) , provides the processing gain at the correlator output.

The antenna array includes eight elements and the training and test signals are the complex cutputs
from the antenna array. The LS-SVM system includes four DOA classes and six DDAG nodes.
Figure 2 shows results for a ten degree range per class. To completely test the LS-SVM DDAG's ca-
pabilities the simulations were automated to test a wide range of DOAs. As can been seen from Fig-
ure 2 the L§-§VM DDAG DOA estimation algorithm is extremely accurate. No misclassifications
were logged. Additional simulations show that the LS-SYM DDAG system accurately classifies the
DOAs for three to len classes and DOA ranges from one degree to twenty degrees.

3.2 Multilabel Capability for Multiple DOAs

in DOA estimation for cellular systems there can be multiple DOAs for a given signal. This resuits
from nultipath effects induced by the environment. The machine learning system must be able
to discriminate betweet 2 small number of independent DOAs that include signal components with
similar time delays. With this constraint the machine learning algorithm must be a multiclass system
and able to process muttiple labels. The machine leaming algorithm must generate multiclass labels,
¥ £ %, where y € [—90,90] is a set of real numbers that represent an appropriate range of expected
DOA values, and multiple labels y;,7 = 1... L for L. dominant signal paths. If antenna sectoring is
used in the cellular system the multiclass labels are from the set x € (5;], where §; is field of view
for the i** sector. Multilabel classification is possible with the LS-SVM DDAG algorithm presented
in Section 3. The LS-$VM algorithm for DOA estimation assigns DOA labels to each eigenvector
in the signal subspace. By repeating the DDAG cycle for each eigenvector the multiclass algorithm
has the capability of assigning multiple labels to the input signal.

59



DOA Test Sigrisls

Figure 2: LS-SVM for DOA estimation, four classes with ten degree separation between each.

4  Conclusion

In this paper we presented a multiclass LS-8VM architecture for DXJA estimation as applied to 2
CDMA cellular system. Simulation resufts show a high degree of accuracy, as refated to the DOA
classes and prove that the LS§-SVM DDAG system has a wide range of performance capabilities.
The broad range of our research in machine learning based DOA estimation includes multilabel
and multiclass classification, classification accuracy, error control and validation, kernel selection,
estimation of signal subspace dimension, and overall performance characterization of the LS-SVM
DDAG DOA estimation algofithm.
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