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Machine Learning based CDMA Power Control

Judd A. Rohwer
Sandia National Laboratories
Telemetry Technology Development
P.O. Box 5800 MS-0986
Albuguerque, NM 87185-0986
Email: jarohwe@sandia.gov

Abstract— This paper presents binary and multiclass machine
learning techniques for CDMA power control. The power conirol
commands are based on estimates of the signal and noise sub-
space cigenvalues and the signal subspace dimension, Results of
two different sets of machine learning algorithms are presented.
Binary machine Iearning algorithms generate fixed-step power
control (FSPC) commands based on estimated eigenvalues and
SIRs. A fixed-set of power control commands are generated with
muiticlass machine learning algorithms. The results show the
limitations of a fixed-set power control system, but also show
that a fixed-set system achieves comparable performance to kigh
complexity closed-loop power control systems.

I. INTRODUCTION

Power control is a critical component in CDMA cellular
systems, Power control combats the “near-far” effect by adjust-
ing the transmit power of each mobile. This technique reduces
the multiple access interference and if the system capacity is
within the set limits, the desired signal-to-interference ratios
(SIR) are achieved at all base stations.

Results of both binary and multiclass machine leaming al-
gorithms for CDMA power control are presented. The machine
learning power contro! algorithms clagsify sets of signal and
noise subspace eigenvalues, from the received signal sample
covariance matrix, into SIR sets. The SIR based classes are
related to fixed-sets of the CDMA power control commands.

The basic machine leaming techniques include estimation
of the signal subspace dimension, required for separating the
signal and noise subspace eigenvalues. The advanced machine
learning technique does not require the signal subspace di-
mension, only the complete set of eigenvalues. The machine
learning training and testing methodologies differ for each, but
the two techniques generate accurate CDMA power control
conmmands.

IE. MACHINE LEARNING TECHNIQUES

Machine learning research has largely been devoted to the
binary and multiclass problems of data mining, text categoriza-
tion, and pattern classification. Machine learning algorithms
have already impacted analysis and design of communication
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systems, Neural Networks have been applied to numerous
problems, ranging from adaptive antenna arrays [1], multiuser
receiver design [2], interference suppression [3], and power
prediction [4]. New advanced learning techniques, such as
support vector machines (SVM) have been applied, in the
binary case, to receiver design and channel equalization {5).
Boosting algerithms [6] have been applied to standard clas-
sification problems, such as text and image classification, but
have yet to be applied to specific comumunication problems.

Pattern classification algorithms apply classification rules
to generate binary and multiclass labels to the input data. In
the binary case, a classification function is estimated using
input/output training pairs with unknown probability distrib-
ution, P{x,y), x is a vector of observations and y is the
corresponding vector of machine learning labels.

Estimating the classification function is the process of
minimizing the expected risk, defined as

RIfl= [LUx).9) Pex.y), ay

where L is the loss function. For detailed information review
the Vapnik-Chervonenkis {VC) theory and structural risk min-
imization (SRM) [7].

A. SVMs - Background

SVMs generate a classification function that separates data
classes, with the largest margin, using a hyperplane. The data
points near the optimal hyperplane are the “support vectors™.
SVMs are a nonparametric machine learning algorithm with
the capability of controlling the capacity through the support
vectors.

The general process of SVM algorithms is based on a
projection of the input space to a higher dimensional feature
space, F, via a nonlinear mapping,

I : RY—F
z — I'(z).

@)
3)

The input data z;, ..., 2y € RY is mapped into a new feature
space £ which could have a much higher dimensionality. The
data in the new feature space is then applied to the desired
machine learning algorithm. Machine leaming theory shows
that the dimension of the feature space is not as important
as the complexity of the classification functions. In the input
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space separating the input/output pairs may tequire a nonlinear
separating function; but in a higher dimension feature space the
input/output pairs may be separated with a linear hyperplane.
1) Kernel Funcrions: Kernel functions are used to compute
the scalar dot products of the input/output pairs in the feature
space, . This allows a decision rule to be applied to the inner
product of training and test points in the feature space.

T(z)L{m)=k(z,2) )]

Four popular kemel functions are the linear kemel, poly-
nomial kemnel, radial basis function (RBF), and multilayer
perceptrons (MLP). The performance of each kernel function
varies with the characteristics of the input data. Refer to [8]
for more information on feature spaces and kernel methods.

B. Binary Classification

In binary classification systems the machine learning algo-
rithm generates the output labels with a hyperplane separation.
The input sequence and a set of training labels are represented
as {Zuutyer: Un = {—1,+1}. If the two classes are
linearly separable in the input space then the hyperplane is
defined as wix4+b = 0, w is a weight vector perpendicular
to the separating hyperplane, & is a bias that shifis the
hyperplane parailel to itself. If the input space is projected
into a higher dimensional feature space then the hyperplane
becomes wiT (z) +b=0.

C. Muiticlass Classification

For the multiclass problem the machine learning algo-
rithm produces estimates with multiple hyperplane separations.
The set of input vectors and training labels is defined as
{xny;}:z;\:::lc yIn € }RNan =1,..., N, Yn € {15 ceey C} 1
1 is the index of the training pattern and C is the number of
classes. :

There exist a number of approaches to the multiclass
classification problem. Two primary techniques are cne-vs-one
and one-vs-rest. One-vs-one applies a binary machine learning
algorithm to selected pairs of classes. For C distinct classes
there are 2‘—2—*'—’ hyperplanes that separate the classes, The
one-vs-rest machine learning technique generates C' hyper-
planes that separate each distinct class from the ensemble of
the rest. The Decision Directed Acyclic Graph (DDAG) and
DAGSVM are specific techniques for one-vs-one multiclass
classification.

D. DDAG and DAGSVM

Platt, et.al., [9] introduced the DDAG, a VC analysis of
the margins, and the development of the DAGSVM algorithm,
The two techniques are based on %’” classifiers fora C
class problem. The DDAG algorithm includes LC;-H nodes,
each associated with a binary classifier and it’s respective
hyperplane. The test emror of the DDAG depends on the
number of classes, C, and the margins between the data points
and the hyperplanes, not on the dimension of the input space.
In [9] it is proved that maximizing the margins at each node of
the DDAG will minimize the generalization error, independent
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Fig. 1. DDAG for four classes

of the dimension of the input space. Refer to Figure 1 for a
diagram of a four class DDAG with “-“4—;1-1 = 6 nodes.

The DAGSVM includes an efficient one-vs-one SVM imple-
mentation that allows for faster training than the standard one-

_vs-ong¢ algorithm and the one-vs-rest approach. The DAGSVM

algorithm is based on the DDAG architecture with each node
containing a binary SVM classifier of the i*® and j** classes.
The training time of each DAGSVM node is equivalent to
a binary SVM. The performance benefit of the DAGSVM is
realized when the it" classifier is selected at the i** /5" node
and the j** class is climinated. Thus any other class pairs
containing the j*" class are removed from the remaining SVM
operations. The 5* class is not a candidate for the output label,
An analysis of the training times for one-vs-rest, one-vs-one
and the DAGSVM are presented in [9]. In this paper one-
vs-one multiclass classification is based on the binary Least
Squares SVMs (LS-SVMs) [14].

INI. FIXED-STEP POWER CONTROL BASED ON BINARY
MACHINE LEARNING

The 1S-95 and cdma2000/3G systems have an 800 bps
up/down power contro! command rate; the single bit power
control command is sent to the mobile station every 1.25
milliseconds [11]. This design limits the options with regards
to power control systems, but the design constraints reduce
the power control problem to generating the fixed-step power
control command.

Binary classification for power control is based on a ma-
chine leamning technique to produce a fixed-step command
based on signal and noise subspace eigenvalues and the esti-
mate of the signal subspace dimension. The optimal separating
hyperplane in generated in the feature space, which separates
the two power control classes. The label, 3 € [—1,1], is



TABLE 1
TRAINING AND TEST ERRORS OF BINARY MACHINE LEARNING

ALGORITHMS
Training Error Test Error
Class ¢ [ Class 1 | Class 0 | Class 1
SVM 0.0012 0.0050 0.0016 | 0.0077
LS-SVM 0.0010 | 0.0000 | 0.06073 | 0.0000
AdaBoost 0.0000 0.0000 0.0032 0.0050
LocBoost 0.00671 0.6150 | 0.0151 0.0233

generated from the signal and interference power estimates,
o B2
1if =t < '}’*
114'2\

—1if =P > 97

Pryn

¥i = ~" is the desired SIR.  (5)

~2
The signal power is defined as ¢, and the interference and

noise power is defined as 5? +n- Refer to [10] for details
on estimating the SIR given the signal and noise subspace
eigenvalues and the signal subspace dimension. Refer to [12]
for a LS-SVM based algorithm for estimating the signal
subspace dimension.

Simulated results of four machine learning techniques for
estimating the optimal hyperplane separation of a binary
classification system are presented below. The four algorithms
tested with simulated signal and noise power estimates are:
1) SVM with RBF kernel and perceptron solver [13], 2)
LS-SVM [14], 3) AdaBoost,[6], and 4) LocBoost [15]. The
training and test data consists of 4000 data points representing
signal and interference power estimates, The four simulations
include a 25% holdout processing; the system is trained with
1000 data points and binary machine learning labels are
applied to 3000 test data points. The SVM, AdaBoost, and
LocBoost simulations are based on MATLAB m files from the
Classification Toolbox [16]. The LS-SVM simulation is based
on MATLAB functions from the LS-SVMlIab toolbox. Table I
lists the training and test etrors assoctated with each algorithm.
The performance of the support vector machine algorithms
equals that of the boosting algorithms; the LS-SVM technique
has the best performance in terms of classification errors.
Figure 2 displays the hyperplane separation of the LS-SVM
machine learning algorithm. The vertical axis is the signal
power estimate and the horizontal axis is the interference
power estimate.

Simulation results of a binary FSPC system are shown in
Figure 3. The top window includes the received SIR for 60
samples and the bottom window includes the FSPC com-
mands. The transition between the two commands includes
20 sample points that must be rounded to the nearest power
control label,

IV, FIXED-SET POWER CONTROL BASED ON MULTICLASS
MACHINE LEARNING

A power control system with a fixed-set of power control
commands is a compromise between the fixed-step power
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Fig. 2. LS-SVM and hyperplane separation of SIR estimates.
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Fig. 3. Simulation results of the binary LS-SVM power control system.

control command and a continucus power control system,
such as the state-space linear quadratic power control (LQPC)
[17] or the constrained second-order power control algorithm
(CSOPC) [18]. This machine learning approach to power
control is a system that relies only on fraining data and the
receiver outputs. A basic SIR based power confrol system
would not require a state-space power control design, the SIR
estimate would be compared tc the desired SIR and then the
appropriate power control command, from a fixed-set, would
be sent to the mobile station.

The fixed-set of power control commands is generated with
a multiclass machine leamning system. The multiclass system is
based on the binary label system, y; ¢ k, where k is a set of real
numbers that represent an appropriate range of expected SIR
values, for example k ¢ {3,5,7,9,11]. Each class represents
a range of received SIRs, which is translated into a power
control command. The size of the power control command,
PC, is directly related to the size of the one-vs-one multiclass
DDAG structure.



PC=(v"~w), yick (6)

Refer to [12] for details of the LS-SVM algorithm for CDMA
power control based on eigenvalue estimates.

The 18-95 and cdma2000/3G systems have an 800 bps
up/down power control command rate. The power control
systems are limited to a single power control bit sent to the
mobile station every 1.25 milliseconds [11]. This constraint
forces the cellular system to FSPC. The fixed-set power control
system requires additional power control bits. Two power
control bits are required for the three and four class fixed-
set designs. The five class system could be implemented with
three power control bits. These bit requirements could be
achieved with the use of auxiliary channels defined in {19].

A. Simulation Results

The training and testing vectors for the LS-SVM DDAG
algorithm for fixed-set power control are based on simulated
CDMA data. The training vectors include uniformly distrib-
uted noise powers with a set of mean values equal to one of
the five DDAG classes. The simulated data includes a range
of transmit powers, time varying channel conditions, an eight
element antenna array, and ecigenvalue estimates generated
with the PASTd subspace tracking algorithm [20].

1) DDAG Training and LS-SVM Testing: The DDAG train-
ing is primarily affected by the span of the signal and
interference powers in the training vectors. The data in the
training vectors must span the entire region around the SIR
thresholds, but the data should not overflow into adjacent SIR
sets. Figure 4 displays the training data plotted with the set of
SIR threshelds. The noise power spans the region of 84D to
24dB. Likewise the signal power spans the region of 10413
to 35dD. The training data must cover all signal and noise
powers that could be detected at the receiver.

B

i

Signal Power
Iz}

-]

"o
Noise

15
Power

Fig. 4. SIR data points plotted as signal power versus noise power. The SIR
power control thresholds are displayed for reference.,

Figure 5 presents a graphic representatidn of the received
SIR, the machine learning estimates, and the SIR thresholds.
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As shown in Figure § the received SIRs range from 3.5d8 te
114B, with a large majority of SIRs around the 543 and 7d 3
classes.
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Fig. 5. Received SIR data points plotted as a function of samples. The plot
includes the ML estimates and SIR thresholds.

V. SIMULATIONS OF POWER CONTROL ALGORITHMS

Two standard methods for characterizing the performance
capabilities of power control algorithms is the convergence
rate and the mobile capacity [17]. A performance indicator for
both methods is the probability of cutage, the probability that
the mobile’s received SIR is below the desired threshold, The
rate of convergence is defined as the number of power contrel
iterations required for the system’s probability of outage to
converge to a steady state value. The capacity of a mobile
cellular system is the number of mobile users that can be
supported while achieving the required Quality of Service
(QoS).

The simulation system includes randomly generated link
gains for the number of mobiles simultaneously entering the
system, F,nax = 1W, ¥* = 6dB, bit rate 9.6KHz,
BW = 1.2288AHz,and n; = 10712, Refer to [17] for a
complete overview of the simulation environment,

Figure 6 is a comparison of the LQPC and the CSOPC
algorithms. The data in the top window shows that LQPC
supports 20 mobiles with zere outages while CSOPC supports
17 mobiles. Simulated data in the bottom window show that
the LQPC requires three iterations before it generates the
optimal power assignments for eighteen mobiles entering a
stable system. '

The top window of Figure 7 includes the probability of
outage versus the number of mobiles in the cellular system
for FSPC and three fixed-set power control systems. For
fixed-set power control the capacity increases with the size
of - the power control set. The five class fixed-set system
supports twenty mobiles with zero probability of outage. The
bottom window of Figure 7 plots the probability of outage
versus the number of iterations. The FSPC system converges
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Fig. 6. Comparison of LQPC and CSOPC, in terms of probability of outage
versus mobile capacity and iterations.
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Fig. 7. Comparison of probability of outage versus mobile capacity and

iterations for FSPC, and three, four, and five class fixed-set power control.

after eighteen power control iterations. The three, four, and
five class fixed-set systems converge after eleven, eight, and
seven iterations, respectively. The mobile capacity for each
system may increase with a greater number of power control
iterations, but as the number of iterations increases so does
the required computational time.

VI. CONCLUSION

In this paper we present two system solutions for machine
learning based power control. Both binary and multiclass
machine learning algorithms are developed to solve this power
control classification problem. Knowledge of the received SIR,
signal subspace dimension, or BER/FER are not required for
an accurate and fast power control system. The machine learn-
ing power control algorithms clagsify the set of cigenvalues
into the received SIR set, which then determines the power
control command.
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