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Abstract-This paper presents binary and multiclass machine 
learning techniques for CDMA power control. The power control 
commands are based on estimates of the signal and noise sub  
space eigenvalues and the signal subspace dimension. Results of 
ha0 different sets of machine learning algorithms are presented. 
Binary machine learning algorithms generate fixed-step power 
control (FSPC) commands based on estimated eigenvalues and 
SIRS. A fixed-set of power control commands are generated with 
multiclass machine learning algorithms. The results show the 
limitations of a fixed-set power control system, but aho show 
that a Bred-set system achieves comparable performance to high 
complexity closed-loop power control systems. 

I. INTRODUCTION 

Power control is a critical component in CDMA cellular 
systems. Power control combats the “near-far” effect by adjust- 
ing the transmit power of each mobile. This technique reduces 
the multiple access interference and if the system capacity is 
within the set limits, the desired signal-to-interference ratios 
(SIR) are achieved at all base stations. 

Results of both binary and multiclass machine learning al- 
gorithms for CDMA power control are presented. The machine 
learning power control algorithm classify sets of signal and 
noise subspace eigenvalues, from the received signal sample 
covariance matrix, into SIR sets. The SIR based classes are 
related to fixed-sets of the CDMA power control commands. 

The basic machine leaming techniques include estimation 
of the signal subspace dimension, required for separating the 
signal and noise subspace eigenvalues. The advanced machine 
learning technique does not require the signal subspace di- 
mension, only the complete set of eigenvalues. The machine 
leaming training and testing methodologies differ for each, but 
the two techniques generate accurate CDMA power control 
commands. 

11. MACHINE LEARNING TECHNIQUES 

Machine learning research has largely been devoted to the 
binary and multiclass problems of data mining, text categoliza- 
tion, and pattern classiJication. Machine leaming algorithms 
have already impacted analysis and design of communication 
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systems. Neural Networks have been applied to numerous 
problem, ranging from adaptive antenna arrays [I], multiuser 
receiver design [2], interference suppression [3], and power 
prediction 141. New advanced learning techniques, such as 
support vector machines (SVM) have been applied, in the 
binary case, to receiver design and channel equalization [5]. 
Boosting algorithms [6]  have been applied to standard clas- 
sification problems, such as text and image classification, but 
have yet to be applied to specific communication problems. 

Pattern classification algorithms apply classification rules 
to generate binary and multiclass labels to the input data. In 
the binary case, a classification function is estimated using 
inputloutput training pairs with unknown probability distrib- 
ution, P ( x ; y ) ,  x is a vector of observations and y is the 
corresponding vector of machine learning labels. 

Estimating the classification function is the process of 
minimizing the expected risk, defined as 

f i[f l= j i . ( f ( X ) . Y ) d P ( X . Y ) :  (1) 

where L is the loss function. For detailed information review 
the Vapnik-Chervonenkis (VC) theory and structural risk min- 
imization (SRM) [7]. 

A .  SVMs - Background 
SVMs generate a classification function that separates data 

classes, with the largest margin, using a hyperplane. The data 
points near the optimal hyperplane are the “support vectors”. 
SVMs are a nonparametric machine learning algorithm with 
the capability of controlling the capacity through the support 
vectors. 

The general process of SVM algorithms is based on a 
projection of the input space to a higher dimensional feature 
space, F, via a nonlinear mapping, 

r : R ~ - F  (2) 
++ r(z). (3) 

The input data .zl, . . . ~ Z,V E RN is mapped into a new feature 
space F which could have a much higher dimensionality. The 
data in the new feature space is then applied to the desired 
machine learning algorithm. Machine learning theory shows 
that the dimension of the feature space is not as important 
as the complexity of the classification functions. In the input 
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space separating the inpudouqut pairs may require a nonlinear 
separating function, but in a higher dimension feature space the 
inpudoutput pairs may he separated with a linear hyperplane. 

I) Kernel Functions: Kernel functions are used to compute 
the scalar dot products of the input/output pairs in the feature 
space, F.This allows a decision rule to be applied to the inner 
product of training and test points in the feature space. 

Four popular kernel functions are the linear kernel, poly- 
nomial kernel, radial hasis function (RBF), and multilayer 
perceptrons (MLP). The performance of each kernel function 
varies with the characteristics of the input data. Refer to [SI 
for more information on feature spaces and kernel methods. 

B. B i n q  Clussifrcutiori 
In binary classification systems the machine learning algo- 

rithm generates the output labels with a hyperplane separation. 
The input se uence and a set of training labels are represented 
as {~,,.y,,},~=~: yn = { -1 ,+1} .  If the two classes are 
linearly separable in the input space then the hyperplane is 
defined as wTx+b = 0, w is a weight vector perpendicular 
to the separating hyperplane, b is a bias that shifts the 
hyperplane parallel to itsetf. If the input space is projected 
into a higher dimensional feature space then the hyperplane 
becomes w'r (z) +b = 0. 

C. A4i1lticluss ClassiJcutiori 

For the multiclass problem the machine learning algo- 
rithm produces estimates with multiple hyperplane separations. 
The set of input vectors and training labels is defined as 

11 is the index of the training pattern and C is the number of 
classes. 

There exist a number of approaches to the multiclass 
classification problem. Two primary techniques are one-vs-one 
and one-vs-rest. One-vsme applies a binary machine learning 
algorithm to selected pairs of classes. For C distinct classes 
there are hyperplanes that separate the classes. The 
one-vs-rest machine learning technique generates C hyper- 
planes that separate each distinct class from the ensemble of 
the rest. The Decision Directed Acyclic Graph @DAG) and 
DAGSVM are specific techniques for one-vs-one multiclass 
classification. 

D. DDAG and DAGSVM 
Plan, et.al., [9] introduced the DDAG, a VC analysis of 

the margins, and the development of the DAGSVM algorithm. 
The two techniques are based on classifiem for a C 
class problem. The DDAG algorithm includes nodes, 
each associated with a binary classifier and it's respective 
hyperplane. The test error of the DDAG depends on the 
number of classes, C, and the margins between the data points 
and the hyperplanes, not on the dimension of the input space. 
In [9] it is proved that maximizing the margins at each node of 
the DDAG will minimize the generalization error, independent 
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Fig. 1. DDAG for fiur classes 

of the. dimension of the input space. Refer to Figure 1 for a 
diagram of a four class DDAG with 

The DAGSVM includes an efficient one-vs-one SVM imple- 
mentation that allows for faster training than the standard one- 
vs-one algorithm and the one-vs-rest approach. The DAGSVM 
algorithm is based on the DDAG architecture with each node 
containing a binary SVM classifier of the ith and jth classes. 
The training time of each DAGSVM node is equivalent to 
a binary SVM. The performance benefit of the DAGSVM is 
realized when the iih classifier is selected at the i t h / j t h  node 
and the j t h  class is eliminated. Thus any other class pairs 
containing the j t h  class are removed &om the remaining SVM 
operations. Thejih class is not a candidate for the output label. 
An analysis of the training times for one-vs-rest, one-vs-one 
and the DAGSVM are presented in [9]. In this paper one- 
vs-one multiclass classification is based on the binary Least 
Squares S V M s  (LS-SVMs) [14]. 

= 6 nodes. 

111. FIXED-STEP POWER CONTROL BASED ON BINARY 
MACHINE LEARNING 

The IS-95 and cdma2000/3G systems have an SO0 bps 
upidown power control command rate; the single bit power 
control command is sent to the mobile station every 1.25 
milliseconds [I l l .  This design l i t s  the options with regards 
to power control systems, but the design constraints reduce 
the power control problem to generating the fixed-step power 
control command. 

Binary classification for power control is based on a ma- 
chine learning technique to produce a fixed-step command 
based on signal and noise subspace eigenvalues and the esti- 
mate of the signal subspace dimension. The optimal separating 
hyperplane in generated in the feature space, which separates 
the two power control classes. The label, y, e [-l,l], is 
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T4BLE I 
TRAINING A N 0  TEST ERRORS OF BINARY MACHINE LEARNING 

ALGORITHMS 

generated from the signal and interference power estimates, 
-* 

I if < y* 
w = +,+, ?* is the desired SIR. (5) 

The signal power is defined as $: and the interference and 
noise power is defined as O,+nr. Refer to [lo] for details 
on estimating the SIR given the signal and noise subspace 
eigenvalues and the signal subspace dimension. Refer to [12] 
for a LS-SVM based algorithm for estimating the signal 
subspace dimension. 

Simulated results of four machine learning techniques for 
estimating the optimal hyperplane separation of a binary 
classification system are presented below. The four algorithms 
tested with simulated signal and noise power estimates are: 
1) SVM with RBF kernel and perceptroo solver [13], 2) 
LS-SVM [14], 3) AdaBoostJfi], and 4) LocBoost [15]. The 
training and test data consists of 4000 data points representing 
signal and interference power estimates. The four simulations 
include a 25% holdout processing; the system is trained with 
1000 data points and binary machine learning labels are 
applied to 3000 test data points. The SVM, AdaBoost, and 
LocBoost simulations are based on MATLAB m files from the 
Classification Toolbox [16]. The LS-SVM simulation is based 
on MATLAB functions from the LS-SVMlab toolbox. Table I 
lists the training and test errors associated with each algorithm. 
The performance of the support vector machine algorithms 
equals that of the boosting algoriths; the LS-SVM technique 
has the best performance in terms of classification errors. 
Figure 2 displays the hyperplane separation of the LS-SVM 
macbine learning algorithm. The vertical axis is the signal 
power estimate and the horizontal axis is the interference 
power estimate. 

-2 

Simulation results of a hinary FSPC system are shown in 
Figure 3. The top window includes the received SIR for 60 
samples and the bottom window includes the FSPC com- 
mands. The transition between the two commands includes 
20 sample points that must be rounded to the nearest power 
control label. 

Iv. FIXED-SET POWER CONTROL BASED ON MULTICLASS 
MACHINE LEARNING 

A power control system with a fixed-set of power control 
commands is a compromise between the fixed-step power 

c 
"*'e p-, 

Fig. 2. LS-SVh4 and hypqlane separation of SIR estimates 

Fig. 3. Simulation rerulu of the binary LS-SVM power control system 

control command and a continuous power control system, 
such as the state-space linear quadratic power control (LQPC) 
[17] or tbe constrained second-order power control algorithm 
(CSOPC) [18]. This machine learning approach to power 
control is a system that relies only on training data and the 
receiver outputs. A basic SIR based power control system 
would not require a state-space power control design, the SIR 
estimate would be compared to the desired SIR and then the 
appropriate power control command, from a fixed-set, would 
he sent to the mobile station. 

The fixed-set of power control commands is generated with 
a multiclass machine learning system. The multiclass system is 
based on the binary label system, yi c k, where k is a set of real 
numbers that represent an appropriate range of expected SIR 
values, for example k r /3 ,5 ,7 ,9 ,11] .  Each class represents 
a range of received SIRS, which is translated into a power 
control command. The sue  of the power control command, 
PC, is directly related to the size of the one-vs-one multiclass 
DDAG smcture. 
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PC = (y* - ~ i ) ,  ~i e k (6)  
Refer to [I21 for details of the LS-SVM algorithm for CDMA 
power control based on eigenvalue estimates. 

The IS-95 and cdma200013G systems have an 800 bps 
upidown power control command rate. The power control 
systems are limited to a single power control bit sent to the 
mobile station every 1.25 milliseconds [I l l .  This constraint 
forces the cellular system to FSPC. The fixed-set power control 
system requires additional power control bits. Two power 
control bits are required for the three and four class fixed- 
set designs. The five class system could he implemented with 
three power control bits. These hit requirements could be 
achieved with the use of auxiliary channels defined in [19]. 

A. Siiiiulation Results 
The training and testing vectors for the LS-SVM DDAG 

algorithm for fixed-set power control are based on simulated 
CDMA data. The training vectors include uniformly distrib- 
uted noise powers with a set of mean values equal to one of 
the five DDAG classes. The simulated data includes a range 
of transmit powers, time varying channel conditions, an eight 
element antenna array, and eigenvalue estimates generated 
with the PASTd subspace tracking algorithm [ZO]. 

I) DDAG Traiiiiiig mid LS-SVM Testing: The DDAG train- 
ing is primarily affected by the span of the signal and 
interference powers in the training vectors. The data in the 
training vectors must span the entire region around the SIR 
thresholds, but the data should not overflow into adjacent SIR 
sets. Figure 4 displays the training data plotted with the set of 
SIR thresholds. The noise power spans the region of 8dB to 
24dB. Likewise the signal power spans the region of l O d B  
to 35dB. The training data must cover all signal and noise 
powers that could be detected at the receiver. 

Noise Power 

Fig. 4. SIR data points plotted as signal powa versus noire power. The SIR 
pwer  eonaol thresholds are displayed for reference. 

Figure 5 presents a graphic representation of the received 
SIR, the machine learning estimates, and the SIR thresholds. 

As shown in Figure 5 the received SIRS range from 3.5dB to 
lldB, with a large majority of SIRS around the 5dB and 7dB 
classes. 
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Fig. 5. Received SIR dab points ploned a$ B function of samples. The plot 
lncludes the ML estimates and SIR thresholds. 

v. SIMULATIONS OF POWER CONTROL ALGORITHMS 
Two standard methods for characterizing the performance 

capabilities of power control algorithms is the convergence 
rate and the mobile capacity [17]. A performance indicator for 
both methods is the probability of outage, the probability that 
the mobile's received SIR is below the desired threshold. The 
rate of convergence is defined as the number of power control 
iterations required for the system's probability of outage to 
converge to a steady state value. The capacity of a mobile 
cellular system is the number of mobile users that can be 
supported while achieving the required Quality of Service 
(QoS). 

The simulation system includes randomly generated link 
gains for the number of mobiles simultaneously entering the 
system, P,,,,,- = 114< 7' = 6dB,  bit rate = 9.6KHz, 
BW = 1.2288AlHt,and 71% = lo-". Refer to [I71 for a 
complete overview of the simulation environment. 

Figure 6 is a comparison of the LQPC and the CSOPC 
algorithm. The data in the top window shows that LQPC 
supports 20 mobiles with zero outages while CSOPC supports 
17 mobiles. Simulated data in the bottom window show that 
the LQPC requires three iterations before it generates the 
optimal power assignments for eighteen mobiles entering a 
stable system. 

The top window of Figure 7 includes the probability of 
outage versus the number of mobiles in the cellular system 
for FSPC and three fixed-set power control systems. For 
fixed-set power control the capacity increases with the size 
of.the power control set. The five class fixed-set system 
supports twenty mobiles with zero probability of outage. The 
bottom window of Figure 7 plots the probability of outage 
versus the number of iterations. The FSPC system converges 
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Fig. 6. Comparison of LQPC and CSOPC, in terms of probability of outage 
versus mobile capacity and iterations. 

Fig. 7. 
iterations for FSPC, and three, four, and five class fixed-set power control. 

Comparison of probability of outage versus mobile capacity and 

after eighteen power control iterations. The three, four, and 
five class fixed-set systems converge after eleven, eight, and 
seven iterations, respectively. The mobile capacity for each 
system may increase with a greater number of power control 
iterations, but as the number of iterations increases so does 
the required computational time. 

VI. CONCLUSION 

In this paper we present two system solutions for machine 
learning based power control. Both binary and multiclass 
machine learning algorithms are developed to solve this power 
control classification problem. Knowledge of the received SIR, 
signal subspace dimension, or BEWFER are not required for 
an accurate and fast power control system. The machine learn- 
ing power control algorithms classify the set of eigenvalues 
into the received SIR set, which then determines the power 
control command. 
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