31 research outputs found

    ON UKRAINIAN LABOR MARKET NEEDS IN MARKETERS

    Get PDF
    Asymmetric Incremental Sheet Forming (AISF) has been developed as a flexible process for low-volume production of sheet metal parts. In AISF, a part is obtained as the sum of localized plastic deformations produced by a simple forming tool that moves under CNC control. In spite of about 20 years of research and development, AISF has not had much industrial take-up yet. The main reason for this is that attempts to improve, among other limitations, the accuracy, speed and range of feasible geometries of the process by adapted process strategies has not brought about general solutions. This paper presents an overview of the current state of development of hybrid asymmetric incremental sheet forming processes at RWTH Aachen University. The goal of the development of hybrid ISF processes is to allow for a quantum leap of the capabilities of AISF in order to enable a broader industrial use of AISF. Two hybrid process variations of AISF are presented: stretch forming combined with ISF and laser-assisted AISF. It is shown that the combination of stretch forming and AISF can improve the time per part, sheet thickness distribution and accuracy of the final part. Laser-assisted AISF is shown to enable the flexible forming of non cold-workable materials such as magnesium and titanium alloys when the forming conditions are adapted to the temperature and strain rate dependent formability of the sheet metal. In addition, first results of the forming of hybrid aluminum-steel sheet metal are shown

    Effect of stress relieving heat treatment on surface topography and dimensional accuracy of incrementally formed grade 1 titanium sheet parts

    Get PDF
    The forming of parts with an optimized surface roughness and high dimensional accuracy is important in many applications of incremental sheet forming (ISF). To realize this, the effect of stress relieving heat treatment of grade-1 Ti parts performed before and after forming on the surface finish and dimensional accuracy was studied. It was found that heat treatment at a temperature of 540 °C for 2 h improves the surface finish of formed parts resulting in a surface with little or no visible tool marks. Additionally, it improves the dimensional accuracy of parts after unclamping from the rig used for forming, in particular, that of parts with shallow wall angles (typically <25°). It was also noted that post-forming heat treatment improves the surface finish of parts. The surface topography of formed parts was studied using interferometry to yield areal surface roughness parameters and subsequently using secondary electron imaging. Back-scatter electron microscopy imaging results coupled with energy-dispersive X-ray (EDX) analysis showed that heat treatment prior to forming leads to tool wear as indicated by the presence of Fe in samples. Furthermore, post-forming heat treatment prevents curling up of formed parts due to compressive stresses if the formed part is trimmed

    Characterization of shape and dimensional accuracy of incrementally formed titanium sheet parts with intermediate curvatures between two feature types

    Get PDF
    Single point incremental forming (SPIF) is a relatively new manufacturing process that has been recently used to form medical grade titanium sheets for implant devices. However, one limitation of the SPIF process may be characterized by dimensional inaccuracies of the final part as compared with the original designed part model. Elimination of these inaccuracies is critical to forming medical implants to meet required tolerances. Prior work on accuracy characterization has shown that feature behavior is important in predicting accuracy. In this study, a set of basic geometric shapes consisting of ruled and freeform features were formed using SPIF to characterize the dimensional inaccuracies of grade 1 titanium sheet parts. Response surface functions using multivariate adaptive regression splines (MARS) are then generated to model the deviations at individual vertices of the STL model of the part as a function of geometric shape parameters such as curvature, depth, distance to feature borders, wall angle, etc. The generated response functions are further used to predict dimensional deviations in a specific clinical implant case where the curvatures in the part lie between that of ruled features and freeform features. It is shown that a mixed-MARS response surface model using a weighted average of the ruled and freeform surface models can be used for such a case to improve the mean prediction accuracy within ±0.5 mm. The predicted deviations show a reasonable match with the actual formed shape for the implant case and are used to generate optimized tool paths for minimized shape and dimensional inaccuracy. Further, an implant part is then made using the accuracy characterization functions for improved accuracy. The results show an improvement in shape and dimensional accuracy of incrementally formed titanium medical implants

    Review on the influence of process parameters in incremental sheet forming

    Get PDF
    Incremental sheet forming (ISF) is a relatively new flexible forming process. ISF has excellent adaptability to conventional milling machines and requires minimum use of complex tooling, dies and forming press, which makes the process cost-effective and easy to automate for various applications. In the past two decades, extensive research on ISF has resulted in significant advances being made in fundamental understanding and development of new processing and tooling solutions. However, ISF has yet to be fully implemented to mainstream high-value manufacturing industries due to a number of technical challenges, all of which are directly related to ISF process parameters. This paper aims to provide a detailed review of the current state-of-the-art of ISF processes in terms of its technological capabilities and specific limitations with discussions on the ISF process parameters and their effects on ISF processes. Particular attention is given to the ISF process parameters on the formability, deformation and failure mechanics, springback and accuracy and surface roughness. This leads to a number of recommendations that are considered essential for future research effort

    Development of a chemical probe against NUDT15

    Get PDF
    The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues

    A novel approach for temperature control in ISF supported by laser and resistance heating

    No full text
    Aeronautical applications often require small batches of large-scale sheet metal parts made from titanium and its alloys. Due to the low formability of titanium at room temperature, warm forming processes are necessary. Incremental sheet metal forming (ISF) is suitable for production of prototypes and small batches as well as large-scale parts. A short review of the experimental work done by international scientists in the field of warm ISF including stationary and moved temperature sensors will be presented mostly applied from the backside of the sheet metal. The present paper shows a new approach for a tool setup including a thermocouple inside of the tool. Hence, the sensor for temperature measurement was moved with the forming zone. Furthermore, a suitable closed loop control including a PID controller will be presented. The characteristics of the controller will be discussed. By means of two different warm ISF processes (ISF with resistance heating and laser-assist ed ISF), the applicability of the developed setup will be analysed and evaluated. It will be shown that the experimental setup is capable to ensure minimal temperatures needed to ensure adequate formability of Ti grade 5
    corecore