33 research outputs found

    Tsunami hazards in the Eastern Mediterranean: strong earthquakes and tsunamis in the East Hellenic Arc and Trench system

    Get PDF
    International audienceData on tsunami phenomena occurring in the East Hellenic Arc and Trench system (HA-T) from antiquity up to the present have been updated, critically evaluated and compiled in the standard GITEC format developed in the last decade for the New European Tsunami Catalogue. New field observations are presented for the tsunamis of 9 February 1948 and 24 March 2002. From the 18 tsunamis reported eight are rather well-documented while another nine remain doubtful. The mean recurrence of strong tsunamis is likely equal to about 142 years. Most of the tsunamis documented are caused by strong earthquakes occurring in the area offshore Rhodes to the east or northeast of the island. However, there are large earthquakes near Rhodes that do not cause tsunamis, like the 1926 and 1957 ones, which is of particular importance for the tsunami hazard assessment

    Tsunami hazard in the Black Sea and the Azov Sea: a new tsunami catalogue

    Get PDF
    Data on tsunamis occurring in the Black Sea and the Azov Sea from antiquity up to the present were updated, critically evaluated and compiled in the standard format developed since the 90's for the New European Tsunami Catalogue. Twenty nine events were examined but three of them, supposedly occurring in 557 AD, 815 AD and 1341 or 1343, were very likely falsely reported. Most of the remaining 26 events were generated in Crimea, offshore Bulgaria as well as offshore North Anatolia. For each of the 26 events examined, 22 events were classified as reliable ones receiving a score of 3 or 4 on a 4-grade reliability scale. Most of them were caused by earthquakes, such as the key event 544/545 of offshore Varna, but a few others were attributed either to aseismic earth slumps or to unknown causes. The tsunami intensity was estimated using the traditional 6-grade scale and the new 12-grade scale introduced by Papadopoulos and Imamura (2001). From 544/545 up to now, only two reliable events of high intensity <i>K</i> ≥ 7 have been reported, which very roughly indicates that the mean repeat time is ∼ 750 years. Five reliable tsunamis of moderate intensity 4 ≤ <i>K</i> < 7 have been observed from 1650 up to the present, which implies a recurrence of 72 years on the average. Although these calculations were based on a very small statistical sample of tsunami events, the repeat times found are consistent with the theoretical expectations from size-frequency relations. However, in the Black Sea there is no evidence of tsunamis of very high intensity (<i>K</i> ∼ 10) such as the AD 365, 1303 and 1956 ones associated with large earthquakes occurring along the Hellenic arc and trench, Greece, or the 1908 one in Messina strait, Italy. This observation, along with the relatively low tsunami frequency, indicates that the tsunami hazard in the Black Sea is low to moderate but not negligible. The tsunami hazard in the Azov Sea is very low because of the very low seismicity but also because of the shallow water prevailing there. In fact, only three possible tsunami events have been reported in the Azov Sea

    The large tsunami of 26 December 2004: Field observations and eyewitnesses accounts from Sri Lanka, Maldives Is. and Thailand

    Get PDF
    Abstract Post-event field surveys were conducted and measurements were taken in Sri Lanka and Maldives about two weeks after the catastrophic Indian Ocean tsunami of 26 December 2004. The measurements taken were cross-checked after interviewing with local people. In the southwest, south and east coastal zones of Sri Lanka maximum water levels ranging from h = 3 m to h = 11 m a.m.s.l. were estimated. The highest values observed were in the south of the island: Galle h ∼ 10 m, Hambantota h ∼ 11m. Maximum inundation of d ∼ 2 km was observed in Hambantota. The heavy destruction and thousands of victims caused in coastal communities, buildings and infrastructure, like railways and bridges, is attributed not only to physical parameters, like the strength of the tsunami hydrodynamic flow, coastal geomorphology and the wave erosional action in soil, but also to anthropogenic factors including the increased vulnerability of the non-RC buildings and the high population density. Local people usually described the tsunami as a series of three main waves. The leading wave phase was only a silent sea level rise of h ≤ 1.5 m and d ≤ 150 m, while the second wave was the strongest one. The first two waves occurred between 09:00 and 09:30 local time, depending on the locality. It is well documented that near Galle, southern part, the strong wave arrived at 09:25:30. In the west coast the third wave was a late arrival which possibly represents reflection phases. In Maldives, three waves were also reported to arrive between 09:00 and 09:30 local time. Maximum water level was only h ∼ 3 m in Laamu Atoll, which is interpreted by the wave amplitude damping by the coral reef to the east of the island complex as well as to that the tsunami did not arrived at high tide time. Damage was observed in several islands of Maldives but this was minimal as compared to the heavy destruction observed in Sri Lanka. About 25 Greek eyewitnesses, who happened to experience the tsunami attack in Padong and Blue Lagoon Port of Phuket island as well as in Maya Bay, Phi-Phi islands, Thailand, were interviewed on the basis of a standard questionnaire. The first sea motion was a retreat of at least 100 m. Then, two main waves arrived, the first being the strong one occurring at about 09:55–10:05 local time, with h ∼ 6m in Padong causing significant destruction and human victims. The collected information clearly indicates that the tsunami propagated as the leading crest wave to the west side, e.g. in Sri Lanka and Maldives, and as the leading trough wave to the east, e.g. in Thailand

    Natural Hazards and Earth System Sciences Tsunami hazard in the Black Sea and the Azov Sea: a new tsunami catalogue

    No full text
    Abstract. Data on tsunamis occurring in the Black Sea and the Azov Sea from antiquity up to the present were updated, critically evaluated and compiled in the standard format developed since th

    a new tsunami catalogue

    No full text
    Abstract. Data on tsunamis occurring in the Black Sea and the Azov Sea from antiquity up to the present were updated, critically evaluated and compiled in the standard format developed since the 90’s for the New European Tsunami Catalogue. Twenty nine events were examined but three of them, supposedly occurring in 557 AD, 815 AD and 1341 or 1343, were very likely falsely reported. Most of the remaining 26 events were generated in Crimea, offshore Bulgaria as well as offshore North Anatolia. For each of the 26 events examined, 22 events were classified as reliable ones receiving a score of 3 or 4 on a 4-grade reliability scale. Most of them were caused by earthquakes, such as the key event 544/545 of offshore Varna, but a few others were attributed either to aseismic earth slumps or to unknown causes. The tsunami intensity was estimate

    Methoni Mw 6.8 rupture and aftershocks distribution from a dense array of OBS and land seismometers, offshore SW Hellenic subduction

    No full text
    Along the south-western offshore Hellenic subduction zone, the overriding Aegean upper plate above the Mediterranean oceanic lithosphere generates uncommon large earthquakes on the offshore megathrust fault. The largest subduction thrust event, for half a century, has been the 14 February 2008 Methoni earthquake (Mw = 6.8) that occurred offshore of the southwest coast of Peloponnesus. We conducted micro-seismicity experiments around the rupture area and forearc domain -between Peloponnesus and Crete- using ocean bottom seismometers (OBS) jointly with land-based seismological stations. Our first experiment in 2006, had revealed an association of the Matapan Trough, a 400-km-long forearc basin, with local seismicity clustering and a possible gap in activity over the later Methoni rupture area. Here we present new data of post-Methoni seismic activity, recorded during a time-span of 11 months, beginning in October 2008 within the period of proposed afterslip on the megathrust, by an extended and dense seismic array consisting of up to 33 OBS. A minimum 1D velocity model was constructed for the region to provide better constraints on absolute locations and double-difference relocation was applied to produce an enhanced image of the spatial distribution of hypocenters. The high resolution earthquake locations confirm correlation of the Matapan Trough with local seismicity as a regional feature, also filling up the previously observed gap. Over the Methoni rupture area, we constrain seismicity to be located mainly within the upper plate. Hypocenters are also resolved above the updip and downdip edges of the rupture area, respectively. Seismic activity provides hints of upper plate structures which were activated in response to post-seismic deformation spreading within the forearc crust. Our findings highlight the characteristics of a megathrust domain which is related with a highly deformable overriding plate and controlled by a segmented lower plate topography. © 2020 Elsevier B.V
    corecore