1,792 research outputs found

    3D simulations of gyrosynchrotron emission from mildly anisotropic nonuniform electron distributions in symmetric magnetic loops

    Full text link
    Microwave emission of solar flares is formed primarily by incoherent gyrosynchrotron radiation generated by accelerated electrons in coronal magnetic loops. The resulting emission depends on many factors, including pitch-angle distribution of the emitting electrons and the source geometry. In this work, we perform systematic simulations of solar microwave emission using recently developed tools (GS Simulator and fast gyrosynchrotron codes) capable of simulating maps of radio brightness and polarization as well as spatially resolved emission spectra. A 3D model of a symmetric dipole magnetic loop is used. We compare the emission from isotropic and anisotropic (of loss-cone type) electron distributions. We also investigate effects caused by inhomogeneous distribution of the emitting particles along the loop. It is found that effect of the adopted moderate electron anisotropy is the most pronounced near the footpoints and it also depends strongly on the loop orientation. Concentration of the emitting particles at the loop top results in a corresponding spatial shift of the radio brightness peak, thus reducing effects of the anisotropy. The high-frequency (around 50 GHz) emission spectral index is specified mainly by the energy spectrum of the emitting electrons; however, at intermediate frequencies (around 10-20 GHz), the spectrum shape is strongly dependent on the electron anisotropy, spatial distribution, and magnetic field nonuniformity. The implications of the obtained results for the diagnostics of the energetic electrons in solar flares are discussed.Comment: ApJ in press. 20 pp, 13 figs, on-line album and simulation source code availabl

    GRB spectral parameter modeling

    Full text link
    Fireball model of the gamma-ray bursts (GRBs) predicts generation of numerous internal shocks, which efficiently accelerate charged particles and generate relatively small-scale stochastic magnetic and electric fields. The accelerated particles diffuse in space due to interaction with the random waves and so emit so called Diffusive Synchrotron Radiation (DSR) in contrast to standard synchrotron radiation they would produce in a large-scale regular magnetic fields. In this contribution we present key results of detailed modeling of the GRB spectral parameters, which demonstrate that the non-perturbative DSR emission mechanism in a strong random magnetic field is consistent with observed distributions of the Band parameters and also with cross-correlations between them.Comment: 3 pages; IAU symposium # 274 "Advances in Plasma Astrophysics

    Thermal to Nonthermal Energy Partition at the Early Rise Phase of Solar Flares

    Full text link
    In some flares the thermal component appears much earlier than the nonthermal component in X-ray range. Using sensitive microwave observations we revisit this finding made by Battaglia et al. (2009) based on RHESSI data analysis. We have found that nonthermal microwave emission produced by accelerated electrons with energy of at least several hundred keV, appears as early as the thermal soft X-ray emission indicative that the electron acceleration takes place at the very early flare phase. The non-detection of the hard X-rays at that early stage of the flares is, thus, an artifact of a limited RHESSI sensitivity. In all considered events, the microwave emission intensity increases at the early flare phase. We found that either thermal or nonthermal gyrosynchrotron emission can dominate the low-frequency part of the microwave spectrum below the spectral peak occurring at 3-10 GHz. In contrast, the high-frequency optically thin part of the spectrum is always formed by the nonthermal, accelerated electron component, whose power-law energy spectrum can extend up to a few MeV at this early flare stage. This means that even though the total number of accelerated electrons is small at this stage, their nonthermal spectrum is fully developed. This implies that an acceleration process of available seed particles is fully operational. While, creation of this seed population (the process commonly called `injection' of the particles from the thermal pool into acceleration) has a rather low efficiency at this stage, although, the plasma heating efficiency is high. This imbalance between the heating and acceleration (in favor of the heating) is difficult to reconcile within most of available flare energization models. Being reminiscent of the tradeoff between the Joule heating and runaway electron acceleration, it puts additional constraints on the electron injection into the acceleration process.Comment: 11 pages, 12 figures, accepted for Ap

    GRB spectral parameters within the fireball model

    Full text link
    Fireball model of the GRBs predicts generation of numerous internal shocks, which then efficiently accelerate charged particles and generate magnetic and electric fields. These fields are produced in the form of relatively small-scale stochastic ensembles of waves, thus, the accelerated particles diffuse in space due to interaction with the random waves and so emit so called Diffusive Synchrotron Radiation (DSR) in contrast to standard synchrotron radiation they would produce in a large-scale regular magnetic fields. In this paper we present first results of comprehensive modeling of the GRB spectral parameters within the fireball/internal shock concept. We have found that the non-perturbative DSR emission mechanism in a strong random magnetic field is consistent with observed distributions of the Band parameters and also with cross-correlations between them; this analysis allowed to restrict GRB physical parameters from the requirement of consistency between the model and observed distributions.Comment: 14 pages, 17 figures, MNRAS in pres

    John Dewey, the Math and Science Standards, and the Workplace

    Get PDF

    The Causes of Business Cycles and the Cyclicality of Real Wages

    Full text link
    This paper estimates the cyclicality of real wages using a VAR approach. Long-run restrictions on the behavior of aggregate hours and output identify labor supply, technology, oil price, and aggregate demand shocks. It is shown that real wages are procyclical in response to technology and oil price shocks but are countercyclical in response to aggregate demand shocks. The evidence is consistent with models where nominal wages are stickier than nominal prices. The results point out the importance of looking at the cyclicality of real wages and output or the unemployment rate.Center for Research on Economic and Social Theory, Department of Economics, University of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/100713/1/ECON182.pd

    Optimized gyrosynchrotron algorithms and fast codes

    Full text link
    Gyrosynchrotron (GS) emission of charged particles spiraling in magnetic fields plays an exceptionally important role in astrophysics. In particular, this mechanism makes a dominant contribution to the continuum solar and stellar radio emissions. However, the available exact equations describing the emission process are extremely slow computationally, thus limiting the diagnostic capabilities of radio observations. In this work, we present approximate GS codes capable of fast calculating the emission from anisotropic electron distributions. The computation time is reduced by several orders of magnitude compared with the exact formulae, while the computation error remains within a few percent. The codes are implemented as the executable modules callable from IDL; they are made available for users via web sites.Comment: Proceedings of the IAU Symposium 274 "Advances in Plasma Astrophysics
    • …
    corecore