247 research outputs found

    Vorlag Effekte einer Schwefel- und Phosphor-Düngung auf Futterleguminosen auf einem Schwefel- und Phosphormangelstandort

    Get PDF
    In this study the effect of sulphate fertilization and rock phosphate fertilization on legumes in a grass clover mixture was investigated on a field under S and P limiting conditions. The results showed that S fertilization resulted in higher yield. Increment of yield came along with higher P uptake, but with decline in P concentration in the shoots. The results suggest that although P might have become a limiting factor, the plants have realized to meet their increased P demand in the case of higher growth rates. became a limiting factor. Independent of S fertilization level rock phosphate application didn’t show any effect

    Numerical modelling for earthquake engineering: the case of lightly RC structural walls

    Get PDF
    Different types of numerical models exist to describe the non‐linear behaviour of reinforced concrete structures. Based on the level of discretization they are often classified as refined or simplified ones. The efficiency of two simplified models using beam elements and damage mechanics in describing the global and local behaviour of lightly reinforced concrete structural walls subjected to seismic loadings is investigated in this paper. The first model uses an implicit and the second an explicit numerical scheme. For each case, the results of the CAMUS 2000 experimental programme are used to validate the approaches

    Analysis of Biomechanical Response After Corneal Crosslinking with Different Fluence Levels in Porcine Corneas.

    Get PDF
    PURPOSE To evaluate corneal stiffening of porcine corneas induced by corneal crosslinking (CXL) with constant irradiance as a function of total fluence. METHODS Ninety corneas from freshly enucleated porcine eyes were divided into five groups of 18 eyes. Groups 1-4 underwent epi-off CXL using a dextran-based riboflavin solution and an irradiance of 18 mW/cm2, group 5 served as the control group. Groups 1 to 4 were treated with a total fluence of 20, 15, 10.8, and 5.4 J/cm2, respectively. Thereafter, biomechanical measurements were performed on 5 mm wide and 6 mm long strips using an uniaxial material tester. Pachymetry measurements were performed on each cornea. RESULTS At 10% strain, the stress was 76, 56, 52, and 31% higher in groups 1-4, respectively compared to the control group. The Young's modulus was 2.85 MPa for group 1, 2.53 MPa for group 2, 2.46 MPa for group 3, 2.12 MPa for group 4, and 1.62 MPa for the control group. The difference between groups 1 to 4 and the control group 5 were statistically significant (p = <0.001; p = <0.001; p = <0.001; p = 0.021). In addition, group 1 showed significantly more stiffening than group 4 (p = <0.001), no other significant differences were found. Pachymetry measurements revealed no statistically significant differences among the five groups. CONCLUSION Additional mechanical stiffening can be achieved by increasing the fluence of the CXL. There was no threshold detected up to 20 J/cm2. A higher fluence could compensate the weaker effect of accelerated or epi-on CXL procedures

    Cyclic shear tests on RC precast beam-to-column connections retrofitted with a three-hinged steel device

    Get PDF
    Recent European earthquakes demonstrated that the seismic response of RC precast structures can be significantly influenced by the connection systems. Moreover, during past seismic events, many failures of the beam-to-column connections occurred due to their inadequate strength under seismic loads. The seismic safety of these connections has a crucial role in the overall seismic capacity of existing precast structures. A new connection system is employed as a retrofitting solution for a damaged beam-to-column connection and its cyclic shear performance is investigated by means of two cyclic shear tests on two different configurations. In both the experimental tests, the results demonstrate an efficient behavior of the retrofitted connections under horizontal cyclic loads. The comparison between the performance of the investigated connection and the response of a typical beam-to-column dowel connection allows to discuss the main critical features of the dowel connection system

    ChAdOx1 nCoV-19 (AZD1222) vaccine-induced Fc receptor binding tracks with differential susceptibility to COVID-19

    Get PDF
    Despite the success of COVID-19 vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged that can cause breakthrough infections. Although protection against severe disease has been largely preserved, the immunological mediators of protection in humans remain undefined. We performed a substudy on the ChAdOx1 nCoV-19 (AZD1222) vaccinees enrolled in a South African clinical trial. At peak immunogenicity, before infection, no differences were observed in immunoglobulin (Ig)G1-binding antibody titers; however, the vaccine induced different Fc-receptor-binding antibodies across groups. Vaccinees who resisted COVID-19 exclusively mounted FcγR3B-binding antibodies. In contrast, enhanced IgA and IgG3, linked to enriched FcγR2B binding, was observed in individuals who experienced breakthrough. Antibodies unable to bind to FcγR3B led to immune complex clearance and resulted in inflammatory cascades. Differential antibody binding to FcγR3B was linked to Fc-glycosylation differences in SARS-CoV-2-specific antibodies. These data potentially point to specific FcγR3B-mediated antibody functional profiles as critical markers of immunity against COVID-19

    Effects of Elevated CO2 and N Addition on Growth and N2 Fixation of a Legume Subshrub (Caragana microphylla Lam.) in Temperate Grassland in China

    Get PDF
    It is well demonstrated that the responses of plants to elevated atmospheric CO2 concentration are species-specific and dependent on environmental conditions. We investigated the responses of a subshrub legume species, Caragana microphylla Lam., to elevated CO2 and nitrogen (N) addition using open-top chambers in a semiarid temperate grassland in northern China for three years. Measured variables include leaf photosynthetic rate, shoot biomass, root biomass, symbiotic nitrogenase activity, and leaf N content. Symbiotic nitrogenase activity was determined by the C2H2 reduction method. Elevated CO2 enhanced photosynthesis and shoot biomass by 83% and 25%, respectively, and the enhancement of shoot biomass was significant only at a high N concentration. In addition, the photosynthetic capacity of C. microphylla did not show down-regulation under elevated CO2. Elevated CO2 had no significant effect on root biomass, symbiotic nitrogenase activity and leaf N content. Under elevated CO2, N addition stimulated photosynthesis and shoot biomass. By contrast, N addition strongly inhibited symbiotic nitrogenase activity and slightly increased leaf N content of C. microphylla under both CO2 levels, and had no significant effect on root biomass. The effect of elevated CO2 and N addition on C. microphylla did not show interannual variation, except for the effect of N addition on leaf N content. These results indicate that shoot growth of C. microphylla is more sensitive to elevated CO2 than is root growth. The stimulation of shoot growth of C. microphylla under elevated CO2 or N addition is not associated with changes in N2-fixation. Additionally, elevated CO2 and N addition interacted to affect shoot growth of C. microphylla with a stimulatory effect occurring only under combination of these two factors

    Elevated CO2 concentration around alfalfa nodules increases N2 fixation

    Get PDF
    Nodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration. The hypothesis of the present paper was that nitrogen fixation in alfalfa plants is enhanced when the nodules are exposed to elevated CO2 concentrations. Therefore nodulated plants of alfalfa were grown in a hydroponic system that allowed separate aeration of the root/nodule compartment that avoided any gas leakage to the shoots. The root/nodule compartments were aerated either with a 2500 μl l−1 (+CO2) or zero μl l−1 (–CO2) CO2-containing N2/O2 gas flow (80/20, v/v). Nodule CO2 fixation, nitrogen fixation, and growth were strongly increased in the +CO2 treatment in a 3-week experimental period. More intensive CO2 and nitrogen fixation coincided with higher per plant amounts of amino acids and organic acids in the nodules. Moreover, the concentration of asparagine was increased in both the nodules and the xylem sap. Plants in the +CO2 treatment tended to develop nodules with higher %N concentration and individual activity. In a parallel experiment on plants with inefficient nodules (fix–) the +CO2 treatment remained without effect. Our data support the thesis that nodule CO2 fixation is pivotal for efficient nitrogen fixation. It is concluded that strategies which enhance nodule CO2 fixation will improve nitrogen fixation and nodule formation. Moreover, sufficient CO2 application to roots and nodules is necessary for growth and efficient nitrogen fixation in hydroponic and aeroponic growth systems

    Dissecting strategies to tune the therapeutic potential of SARS-CoV-2–specific monoclonal antibody CR3022

    Get PDF
    The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coupled with a lack of therapeutics, has paralyzed the globe. Although significant effort has been invested in identifying antibodies that block infection, the ability of antibodies to target infected cells through Fc interactions may be vital to eliminate the virus. To explore the role of Fc activity in SARS-CoV-2 immunity, the functional potential of a cross–SARS-reactive antibody, CR3022, was assessed. CR3022 was able to broadly drive antibody effector functions, providing critical immune clearance at entry and upon egress. Using selectively engineered Fc variants, no protection was observed after administration of WT IgG1 in mice or hamsters. Conversely, the functionally enhanced Fc variant resulted in increased pathology in both the mouse and hamster models, causing weight loss in mice and enhanced viral replication and weight loss in the more susceptible hamster model, highlighting the pathological functions of Fc-enhancing mutations. These data point to the critical need for strategic Fc engineering for the treatment of SARS-CoV-2 infection
    corecore