385 research outputs found

    The stable isotope ecology of terrestrial plant succession

    Get PDF
    We review the relevance and use of stable isotopes for the study of plant community succession. Stable isotope measurements provide information on the origin of resources acquired by plants, the processes governing resource uptake and transformation, and the physiological and environmental conditions of plant growth. When combined with measurements of the stable isotope ratio values of soil microbial biomass, soil organic matter and plant litter, isotope measurements of plants can indicate effects of successional changes on ecosystem processes. However, their application to questions of plant succession and ecosystem change is limited by the degree to which the underlying assumptions are met in each study, and complementary measures may be required, depending upon the question of interest. First, we discuss the changes that occur in the stable isotope composition of plants and ecosystems with ontogeny and species replacements, as well as their potential evolutionary significance. Second, we discuss the imprints of plant competition and facilitation on leaf and wood tissue, as well as how stable isotopes can provide novel insights on the mechanisms underlying plant interactions. Finally, we discuss the capacity for stable isotope measurements to serve as a proxy record for past disturbances such as fire, logging and cyclones

    Multiwavelength optical and NIR variability analysis of the Blazar PKS 0027-426

    Get PDF
    Funding: EG and SFH acknowledge support from the Horizon 2020 ERC Starting Grant DUST-IN-THE-WIND (ERC-2015-StG-677117). EG acknowledges support from STFC for funding this PhD. Research leading to these results has received funding from the European Research Council under the European Union 7th Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de CiĂȘncia Tecnologia (INCT) e-Universe (CNPq grant no. 465376/2014-2).We present multiwavelength spectral and temporal variability analysis of PKS 0027-426 using optical griz observations from Dark Energy Survey between 2013 and 2018 and VEILS Optical Light curves of Extragalactic TransienT Events (VOILETTE) between 2018 and 2019 and near-infrared (NIR) JKs observations from Visible and Infrared Survey Telescope for Astronomy Extragalactic Infrared Legacy Survey (VEILS) between 2017 and 2019. Multiple methods of cross-correlation of each combination of light curve provides measurements of possible lags between optical–optical, optical–NIR, and NIR–NIR emission, for each observation season and for the entire observational period. Inter-band time lag measurements consistently suggest either simultaneous emission or delays between emission regions on time-scales smaller than the cadences of observations. The colour–magnitude relation between each combination of filters was also studied to determine the spectral behaviour of PKS 0027-426. Our results demonstrate complex colour behaviour that changes between bluer when brighter, stable when brighter, and redder when brighter trends over different time-scales and using different combinations of optical filters. Additional analysis of the optical spectra is performed to provide further understanding of this complex spectral behaviour.Publisher PDFPeer reviewe

    Consistency of cosmic shear analyses in harmonic and real space

    Get PDF
    Recent cosmic shear studies have reported discrepancies of up to 1σ on the parameter S8=σ8Ωm/0.3‟‟‟‟‟‟‟√S8=σ8Ωm/0.3 between the analysis of shear power spectra and two-point correlation functions, derived from the same shear catalogues. It is not a priori clear whether the measured discrepancies are consistent with statistical fluctuations. In this paper, we investigate this issue in the context of the forthcoming analyses from the third year data of the Dark Energy Survey (DES Y3). We analyse DES Y3 mock catalogues from Gaussian simulations with a fast and accurate importance sampling pipeline. We show that the methodology for determining matching scale cuts in harmonic and real space is the key factor that contributes to the scatter between constraints derived from the two statistics. We compare the published scales cuts of the KiDS, Subaru-HSC, and DES surveys, and find that the correlation coefficients of posterior means range from over 80 per cent for our proposed cuts, down to 10 per cent for cuts used in the literature. We then study the interaction between scale cuts and systematic uncertainties arising from multiple sources: non-linear power spectrum, baryonic feedback, intrinsic alignments, uncertainties in the point spread function, and redshift distributions. We find that, given DES Y3 characteristics and proposed cuts, these uncertainties affect the two statistics similarly; the differential biases are below a third of the statistical uncertainty, with the largest biases arising from intrinsic alignment and baryonic feedback. While this work is aimed at DES Y3, the tools developed can be applied to Stage-IV surveys where statistical errors will be much smaller

    Dark Energy Survey Year 3 results: Calibration of lens sample redshift distributions using clustering redshifts with BOSS/eBOSS

    Get PDF
    We present clustering redshift measurements for Dark Energy Survey (DES) lens sample galaxies used in weak gravitational lensing and galaxy clustering studies. To perform these measurements, we cross-correlate with spectroscopic galaxies from the Baryon Acoustic Oscillation Survey (BOSS) and its extension, eBOSS. We validate our methodology in simulations, including a new technique to calibrate systematic errors that result from the galaxy clustering bias, and we find that our method is generally unbiased in calibrating the mean redshift. We apply our method to the data, and estimate the redshift distribution for 11 different photometrically selected bins. We find general agreement between clustering redshift and photometric redshift estimates, with differences on the inferred mean redshift found to be below |Δz| = 0.01 in most of the bins. We also test a method to calibrate a width parameter for redshift distributions, which we found necessary to use for some of our samples. Our typical uncertainties on the mean redshift ranged from 0.003 to 0.008, while our uncertainties on the width ranged from 4 to 9 per cent. We discuss how these results calibrate the photometric redshift distributions used in companion papers for DES Year 3 results

    Optical variability of quasars with 20-yr photometric light curves

    Get PDF
    We study the optical gri photometric variability of a sample of 190 quasars within the SDSS Stripe 82 region that have long-term photometric coverage during ∌1998−2020 with SDSS, PanSTARRS-1, the Dark Energy Survey, and dedicated follow-up monitoring with Blanco 4m/DECam. With on average ∌200 nightly epochs per quasar per filter band, we improve the parameter constraints from a Damped Random Walk (DRW) model fit to the light curves over previous studies with 10–15 yr baselines and â‰Č 100 epochs. We find that the average damping time-scale τDRW continues to rise with increased baseline, reaching a median value of ∌750 d (g band) in the rest frame of these quasars using the 20-yr light curves. Some quasars may have gradual, long-term trends in their light curves, suggesting that either the DRW fit requires very long baselines to converge, or that the underlying variability is more complex than a single DRW process for these quasars. Using a subset of quasars with better-constrained τDRW (less than 20 per cent of the baseline), we confirm a weak wavelength dependence of τDRW∝λ0.51 ± 0.20. We further quantify optical variability of these quasars over days to decades time-scales using structure function (SF) and power spectrum density (PSD) analyses. The SF and PSD measurements qualitatively confirm the measured (hundreds of days) damping time-scales from the DRW fits. However, the ensemble PSD is steeper than that of a DRW on time-scales less than ∌ a month for these luminous quasars, and this second break point correlates with the longer DRW damping time-scale

    Consistent lensing and clustering in a low-S8 Universe with BOSS, DES Year 3, HSC Year 1, and KiDS-1000

    Get PDF
    We evaluate the consistency between lensing and clustering based on measurements from Baryon Oscillation Spectroscopic Survey combined with galaxy-galaxy lensing from Dark Energy Survey (DES) Year 3, Hyper Suprime-Cam Subaru Strategic Program (HSC) Year 1, and Kilo-Degree Survey (KiDS)-1000. We find good agreement between these lensing data sets. We model the observations using the DARK EMULATOR and fit the data at two fixed cosmologies: Planck (S8 = 0.83), and a Lensing cosmology (S8 = 0.76). For a joint analysis limited to large scales, we find that both cosmologies provide an acceptable fit to the data. Full utilization of the higher signal-to-noise small-scale measurements is hindered by uncertainty in the impact of baryon feedback and assembly bias, which we account for with a reasoned theoretical error budget. We incorporate a systematic inconsistency parameter for each redshift bin, A, that decouples the lensing and clustering. With a wide range of scales, we find different results for the consistency between the two cosmologies. Limiting the analysis to the bins for which the impact of the lens sample selection is expected to be minimal, for the Lensing cosmology, the measurements are consistent with A = 1; A = 0.91 ± 0.04 (A = 0.97 ± 0.06) using DES+KiDS (HSC). For the Planck case, we find a discrepancy: A = 0.79 ± 0.03 (A = 0.84 ± 0.05) using DES+KiDS (HSC). We demonstrate that a kinematic Sunyaev-Zeldovich-based estimate for baryonic effects alleviates some of the discrepancy in the Planck cosmology. This analysis demonstrates the statistical power of small-scale measurements; however, caution is still warranted given modelling uncertainties and foreground sample selection effects

    Dark energy survey year 3 results: Galaxy sample for BAO measurement

    Get PDF
    In this paper, we present and validate the galaxy sample used for the analysis of the baryon acoustic oscillation (BAO) signal in the Dark Energy Survey (DES) Y3 data. The definition is based on a colour and redshift-dependent magnitude cut optimized to select galaxies at redshifts higher than 0.5, while ensuring a high-quality determination. The sample covers ~4100 deg2 to a depth of i = 22.3 (AB) at 10s. It contains 7031 993 galaxies in the redshift range from z = 0.6 to 1.1, with a mean effective redshift of 0.835. Redshifts are estimated with the machine learning algorithm DNF, and are validated using the VIPERS PDR2 sample. We find a mean redshift bias of zbias~0.01 and a mean uncertainty, in units of 1 + z, of σ68~0.03. We evaluate the galaxy population of the sample, showing it is mostly built upon Elliptical to Sbc types. Furthermore, we find a low level of stellar contamination of ≀ 4 per cent. We present the method used to mitigate the effect of spurious clustering coming from observing conditions and other large-scale systematics.We apply it to the BAO sample and calculate weights that are used to get a robust estimate of the galaxy clustering signal. This paper is one of a series dedicated to the analysis of the BAO signal in DES Y3. In the companion papers, we present the galaxy mock catalogues used to calibrate the analysis and the angular diameter distance constraints obtained through the fitting to the BAO scale

    OzDES reverberation mapping program: Lag recovery reliability for 6-yr C iv analysis

    Get PDF
    We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform this statistical analysis we have created a suite of customizable simulations that mimic the characteristics of each source in the OzDES sample. These characteristics include: the variability in the photometric and spectroscopic light curves, the measurement uncertainties, and the observational cadence. By simulating the sources in the OzDES sample that contain the C iv emission line, we developed a set of criteria that rank the reliability of a recovered time-lag depending on the agreement between different recovery methods, the magnitude of the uncertainties, and the rate at which false positives were found in the simulations. These criteria were applied to simulated light curves and these results used to estimate the quality of the resulting Radius-Luminosity relation. We grade the results using three quality levels (gold, silver, and bronze). The input slope of the R-L relation was recovered within 1σ for each of the three quality samples, with the gold standard having the lowest dispersion with a recovered a R-L relation slope of 0.454 ± 0.016 with an input slope of 0.47. Future work will apply these methods to the entire OzDES sample of 771 AGN

    Multiwavelength optical and NIR variability analysis of the Blazar PKS 0027-426

    Get PDF
    We present multiwavelength spectral and temporal variability analysis of PKS 0027-426 using optical griz observations from Dark Energy Survey between 2013 and 2018 and VEILS Optical Light curves of Extragalactic TransienT Events (VOILETTE) between 2018 and 2019 and near-infrared (NIR) JKs observations from Visible and Infrared Survey Telescope for Astronomy Extragalactic Infrared Legacy Survey (VEILS) between 2017 and 2019. Multiple methods of cross-correlation of each combination of light curve provides measurements of possible lags between optical–optical, optical–NIR, and NIR–NIR emission, for each observation season and for the entire observational period. Inter-band time lag measurements consistently suggest either simultaneous emission or delays between emission regions on time-scales smaller than the cadences of observations. The colour–magnitude relation between each combination of filters was also studied to determine the spectral behaviour of PKS 0027-426. Our results demonstrate complex colour behaviour that changes between bluer when brighter, stable when brighter, and redder when brighter trends over different time-scales and using different combinations of optical filters. Additional analysis of the optical spectra is performed to provide further understanding of this complex spectral behaviour
    • 

    corecore