15 research outputs found
Estudio PET-TC con 18F-fluoro-L-DOPA combinado con el análisis genético para la optimización de la clasificación y tratamiento de un niño con hiperinsulinismo congénito grave
Abstract
BACKGROUND:
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycaemia in infancy. The differential diagnosis between focal and diffuse forms of CHI is of great importance when planning surgery. The aim of this article is to show the first case of focal CHI diagnosed in Spain using PET-CT imaging combined with genetic analysis.
METHODS:
A 13 month child with CHI and normal conventional radiological investigations treated with diazoxide, diet control and feeding by gastrostomy is presented. Genetic analysis of ABCC8 and KCNJ11 genes and PET-TAC using 18F-fluoro-L-DOPA were performed.
RESULTS:
A pathological mutation (G111R) in the paternal allele of ABCC8 was detected. PET-CT scanning using 18F-fluoro-L-DOPA showed a focus of high uptake in the body of the pancreas compatible with adenoma that was hystopathologically confirmed. After surgical resection the patient is asymptomatic without needing either pharmacological treatment or dietetic control.
CONCLUSIONS:
The combination of genetic analysis and 18F-fluoro-L-DOPA PET-TAC shows a great potential for the identification, location and guideline for surgery in CHI
Estudio PET-TC con 18F-fluoro-L-DOPA combinado con el análisis genético para la optimización de la clasificación y tratamiento de un niño con hiperinsulinismo congénito grave
Abstract
BACKGROUND:
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycaemia in infancy. The differential diagnosis between focal and diffuse forms of CHI is of great importance when planning surgery. The aim of this article is to show the first case of focal CHI diagnosed in Spain using PET-CT imaging combined with genetic analysis.
METHODS:
A 13 month child with CHI and normal conventional radiological investigations treated with diazoxide, diet control and feeding by gastrostomy is presented. Genetic analysis of ABCC8 and KCNJ11 genes and PET-TAC using 18F-fluoro-L-DOPA were performed.
RESULTS:
A pathological mutation (G111R) in the paternal allele of ABCC8 was detected. PET-CT scanning using 18F-fluoro-L-DOPA showed a focus of high uptake in the body of the pancreas compatible with adenoma that was hystopathologically confirmed. After surgical resection the patient is asymptomatic without needing either pharmacological treatment or dietetic control.
CONCLUSIONS:
The combination of genetic analysis and 18F-fluoro-L-DOPA PET-TAC shows a great potential for the identification, location and guideline for surgery in CHI
Long-term survival in a child with severe encephalpathy, multiple respiratory chain deficiency and GFM1 mutations (vol 6, 102, 2015)
Background: Mitochondrial diseases due to deficiencies in the mitochondrial oxidative phosphorylation system (OXPHOS) can be associated with nuclear genes involved in mitochondrial translation, causing heterogeneous early onset and often fatal phenotypes. Case report: The authors describe the clinical features and diagnostic workup of an infant who presented with an early onset severe encephalopathy, spastic-dystonic tetraparesis, failure to thrive, seizures and persistent lactic acidemia. Brain imaging revealed thinning of the corpus callosum and diffuse alteration of white matter signal. Genetic investigation confirmed two novel mutations in the GFM1 gene, encoding the mitochondrial translation elongation factor G1 (mtEFG1), resulting in combined deficiencies of OXPHOS. Discussion: The patient shares multiple clinical, laboratory and radiological similarities with the 11 reported patients with mutations involving this gene, but presents with a stable clinical course without metabolic decompensations, rather than a rapidly progressive fatal course. Defects in GFM1 gene confer high susceptibility to neurologic or hepatic dysfunction and this is, to the best of our knowledge, the first described patient who has survived beyond early childhood. Reporting of such cases is essential so as to delineate the key clinical and neuroradiological features of this disease and provide a more comprehensive view of its prognosis
Conservatively treated Congenital Hyperinsulinism (CHI) due to K-ATP channel gene mutations: reducing severity over time.
Patients with Congenital Hyperinsulinism (CHI) due to mutations in K-ATP channel genes (K-ATP CHI) are increasingly treated by conservative medical therapy without pancreatic surgery. However, the natural history of medically treated K-ATP CHI has not been described; it is unclear if the severity of recessively and dominantly inherited K-ATP CHI reduces over time. We aimed to review variation in severity and outcomes in patients with K-ATP CHI treated by medical therapy.This article is freely available via Open Access. Click on Additional Link above to access the full-text via the publisher's website