267,982 research outputs found

    2D continuous spectrum of shear Alfven waves in the presence of a magnetic island

    Full text link
    The radial structure of the continuous spectrum of shear Alfven modes is calculated in the presence of a magnetic island in tokamak plasmas. Modes with the same helicity of the magnetic island are considered in a slab model approximation. In this framework, with an appropriate rotation of the coordinates the problem reduces to 2 dimensions. Geometrical effects due to the shape of the flux surface's cross section are retained to all orders. On the other hand, we keep only curvature effects responsible of the beta induced gap in the low-frequency part of the continuous spectrum. New continuum accumulation points are found at the O-point of the magnetic island. The beta-induced Alfven Eigenmodes (BAE) continuum accumulation point is found to be positioned at the separatrix flux surface. The most remarkable result is the nonlinear modification of the BAE continuum accumulation point frequency

    Control of laser wake field acceleration by plasma density profile

    Full text link
    We show that both the maximum energy gain and the accelerated beam quality can be efficiently controlled by the plasma density profile. Choosing a proper density gradient one can uplift the dephasing limitation. When a periodic wake field is exploited, the phase synchronism between the bunch of relativistic particles and the plasma wave can be maintained over extended distances due to the plasma density gradient. Putting electrons into the nn-th wake period behind the driving laser pulse, the maximum energy gain is increased by the factor 2πn2\pi n over that in the case of uniform plasma. The acceleration is limited then by laser depletion rather than by dephasing. Further, we show that the natural energy spread of the particle bunch acquired at the acceleration stage can be effectively removed by a matched deceleration stage, where a larger plasma density is used

    Controlling electron-electron correlation in frustrated double ionization of molecules with orthogonally polarized two-color laser fields

    Get PDF
    We demonstrate the control of electron-electron correlation in frustrated double ionization (FDI) of the two-electron triatomic molecule D3+_{3}^{+} when driven by two orthogonally polarized two-color laser fields. We employ a three-dimensional semi-classical model that fully accounts for the electron and nuclear motion in strong fields. We analyze the FDI probability and the distribution of the momentum of the escaping electron along the polarization direction of the longer wavelength and more intense laser field. These observables when considered in conjunction bear clear signatures of the prevalence or absence of electron-electron correlation in FDI, depending on the time-delay between the two laser pulses. We find that D3+_{3}^{+} is a better candidate compared to H2_{2} for demonstrating also experimentally that electron-electron correlation indeed underlies FDI.Comment: 5 pages, 4 figure

    Temperature-resonant cyclotron spectra in confined geometries

    Full text link
    We consider a two-dimensional gas of colliding charged particles confined to finite size containers of various geometries and subjected to a uniform orthogonal magnetic field. The gas spectral densities are characterized by a broad peak at the cyclotron frequency. Unlike for infinitely extended gases, where the amplitude of the cyclotron peak grows linearly with temperature, here confinement causes such a peak to go through a maximum for an optimal temperature. In view of the fluctuation-dissipation theorem, the reported resonance effect has a direct counterpart in the electric susceptibility of the confined magnetized gas

    Effects of energetic particles on zonal flow generation by toroidal Alfven eigenmode

    Full text link
    Generation of zonal ow (ZF) by energetic particle (EP) driven toroidal Alfven eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that, nonlinear resonant EP contri- bution dominates over the usual Reynolds and Maxwell stresses due to thermal plasma nonlinear response. ZF can be forced driven in the linear growth stage of TAE, with the growth rate being twice the TAE growth rate. The ZF generation mechanism is shown to be related to polarization induced by resonant EP nonlinearity. The generated ZF has both the usual meso-scale and micro- scale radial structures. Possible consequences of this forced driven ZF on the nonlinear dynamics of TAE are also discussed.Comment: To be submitted to Physics of Plasma

    Perturbational approach to the quantum capacity of additive Gaussian quantum channel

    Full text link
    For a quantum channel with additive Gaussian quantum noise, at the large input energy side, we prove that the one shot capacity is achieved by the thermal noise state for all Gaussian state inputs, it is also true for non-Gaussian input in the sense of first order perturbation. For a general case of nn copies input, we show that up to first order perturbation, any non-Gaussian perturbation to the product thermal state input has a less quantum information transmission rate when the input energy tend to infinitive.Comment: 5 page

    High-performance nn-type organic field-effect transistors with ionic liquid gates

    Full text link
    High-performance nn-type organic field-effect transistors were developed with ionic-liquid gates and N,N"^"-bis(n-alkyl)-(1,7 and 1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide)s single-crystals. Transport measurements show that these devices reproducibly operate in ambient atmosphere with negligible gate threshold voltage and mobility values as high as 5.0 cm2^2/Vs. These mobility values are essentially identical to those measured in the same devices without the ionic liquid, using vacuum or air as the gate dielectric. Our results indicate that the ionic-liquid and nn-type organic semiconductor interfaces are suitable to realize high-quality nn-type organic transistors operating at small gate voltage, without sacrificing electron mobility

    Lattice Boltzmann Thermohydrodynamics

    Full text link
    We introduce a lattice Boltzmann computational scheme capable of modeling thermohydrodynamic flows of monatomic gases. The parallel nature of this approach provides a numerically efficient alternative to traditional methods of computational fluid dynamics. The scheme uses a small number of discrete velocity states and a linear, single-time-relaxation collision operator. Numerical simulations in two dimensions agree well with exact solutions for adiabatic sound propagation and Couette flow with heat transfer.Comment: 11 pages, Physical Review E: Rapid Communications, in pres

    Supersolid phases in the extended boson hubbard model

    Full text link
    We present a comprehensive numerical study on the ground state phase diagram of the two-dimensional hardcore boson extended Hubbard model with nearest (V1V_1) and next nearest neighbor (V2V_2) repulsions. In addition to the quantum solid and superfluid phases, we report the existence of striped supersolid and three-quarter (quarter) filled supersolid at commensurate density ρ=0.75\rho=0.75 (0.25) due to the interplay of V1V_1 and V2V_2 interactions. The nature of three-quarter filled supersolid and the associated quantum solid will be discussed. Quantum phase transition between the two supersolids of different symmetries is observed and is clearly of first order.Comment: 4 pages, 6 figure
    corecore